Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence

免疫系统 免疫疗法 癌症免疫疗法 肿瘤微环境 生物 免疫检查点 人口 计算机科学 计算生物学 癌症 生物信息学 免疫学 医学 遗传学 环境卫生
作者
Ying Xu,Guan-Hua Su,Ding Ma,Yi Xiao,Zhi-Ming Shao,Yi‐Zhou Jiang
出处
期刊:Signal Transduction and Targeted Therapy [Springer Nature]
卷期号:6 (1) 被引量:102
标识
DOI:10.1038/s41392-021-00729-7
摘要

Immunotherapies play critical roles in cancer treatment. However, given that only a few patients respond to immune checkpoint blockades and other immunotherapeutic strategies, more novel technologies are needed to decipher the complicated interplay between tumor cells and the components of the tumor immune microenvironment (TIME). Tumor immunomics refers to the integrated study of the TIME using immunogenomics, immunoproteomics, immune-bioinformatics, and other multi-omics data reflecting the immune states of tumors, which has relied on the rapid development of next-generation sequencing. High-throughput genomic and transcriptomic data may be utilized for calculating the abundance of immune cells and predicting tumor antigens, referring to immunogenomics. However, as bulk sequencing represents the average characteristics of a heterogeneous cell population, it fails to distinguish distinct cell subtypes. Single-cell-based technologies enable better dissection of the TIME through precise immune cell subpopulation and spatial architecture investigations. In addition, radiomics and digital pathology-based deep learning models largely contribute to research on cancer immunity. These artificial intelligence technologies have performed well in predicting response to immunotherapy, with profound significance in cancer therapy. In this review, we briefly summarize conventional and state-of-the-art technologies in the field of immunogenomics, single-cell and artificial intelligence, and present prospects for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遍地梨花发布了新的文献求助10
刚刚
丘比特应助韩雪霞采纳,获得30
刚刚
whatwhat应助无私的妙菡采纳,获得10
刚刚
王永明发布了新的文献求助10
1秒前
学术妲己发布了新的文献求助10
1秒前
乔乔兔发布了新的文献求助10
1秒前
江南刀王发布了新的文献求助10
1秒前
2秒前
2秒前
null应助何相逢采纳,获得10
2秒前
xs发布了新的文献求助10
2秒前
2秒前
whisper发布了新的文献求助10
2秒前
期待完成签到,获得积分10
4秒前
4秒前
dududu完成签到,获得积分10
5秒前
6秒前
小周发布了新的文献求助10
6秒前
woo发布了新的文献求助10
6秒前
33A2D17发布了新的文献求助10
7秒前
李健应助成就的迎夏采纳,获得10
7秒前
7秒前
怕孤独的香蕉完成签到,获得积分10
7秒前
8秒前
柒柒发布了新的文献求助10
8秒前
8秒前
Bing发布了新的文献求助10
9秒前
10秒前
lab完成签到 ,获得积分0
10秒前
11秒前
bolan发布了新的文献求助10
11秒前
烟花应助乔乔兔采纳,获得10
11秒前
12秒前
13秒前
Yusuf发布了新的文献求助10
13秒前
13秒前
LEEGAN发布了新的文献求助10
13秒前
英姑应助好好学习采纳,获得10
14秒前
14秒前
惊鸿客应助问雁采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5086374
求助须知:如何正确求助?哪些是违规求助? 4302147
关于积分的说明 13406829
捐赠科研通 4127297
什么是DOI,文献DOI怎么找? 2260275
邀请新用户注册赠送积分活动 1264492
关于科研通互助平台的介绍 1198653