材料科学
超晶格
异质结
钙钛矿(结构)
外延
应变工程
凝聚态物理
铁电性
晶格常数
Crystal(编程语言)
局部对称性
晶体学点群
晶体结构
衍射
化学物理
结晶学
纳米技术
光电子学
图层(电子)
电介质
光学
物理
化学
计算机科学
程序设计语言
硅
量子力学
作者
Xiang Ding,Baishun Yang,Haiyan Leng,Jae Hyuch Jang,Junrui Zhao,Chao Zhang,Sa Zhang,Guixin Cao,Ji Zhang,Rohan Mishra,Jiabao Yi,Dongchen Qi,Zheng Gai,Xiaotao Zu,Sean Li,Bing Huang,Albina Y. Borisevich,Liang Qiao
标识
DOI:10.1002/adfm.202106466
摘要
Abstract Interface plays a critical role in determining the physical properties and device performance of heterostructures. Traditionally, lattice mismatch, resulting from the different lattice constants of the heterostructure, can induce epitaxial strain. Over past decades, strain engineering has been demonstrated as a useful strategy to manipulate the functionalities of the interface. However, mismatch of crystal symmetry at the interface is relatively less studied due to the difficulty of atomically structural characterization, particularly for the epitaxy of low symmetry correlated materials on the high symmetry substrates. Overlooking those phenomena restrict the understanding of the intrinsic properties of the as‐ determined heterostructure, resulting in some long‐standing debates including the origin of magnetic and ferroelectric dead layers. Here, perovskite LaCoO 3 ‐SrTiO 3 superlattice (SL) is used as a model system to show that the crystal symmetry effect can be isolated by the existing interface strain. Combining the state‐of‐art diffraction and electron microscopy, it is found that the symmetry mismatch of LaCoO 3 ‐SrTiO 3 SL can be tuned by manipulating the SrTiO 3 layer thickness to artificially control the magnetic properties. The work suggests that crystal symmetry mismatch can also be designed and engineered to act as an effective strategy to generate functional properties of perovskite oxides.
科研通智能强力驱动
Strongly Powered by AbleSci AI