Hyperspectral Image Classification Based on Domain Adversarial Broad Adaptation Network

计算机科学 人工智能 模式识别(心理学) 高光谱成像 域适应 上下文图像分类 机器学习 图像(数学) 分类器(UML)
作者
Haoyu Wang,Yuhu Cheng,C. L. Philip Chen,Xuesong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:9
标识
DOI:10.1109/tgrs.2021.3128162
摘要

For hyperspectral image (HSI) classification tasks, obtaining sufficient labeled samples is usually difficult, time-consuming, and expensive. To address the aforementioned issue, by transferring the labeled sample information of a relevant source domain to the unlabeled target domain, an HSI classification method based on the domain adversarial broad adaptation network (DABAN) is proposed. First, the bottleneck adaptation module composed of a bottleneck layer and a domain adaptation layer is constructed and introduced to the domain adversarial neural network; thus, the domain adversarial adaptation network (DAAN) is designed. By simultaneously performing domain adversarial learning, reducing both the marginal distribution difference and second-order statistic difference between two domains, the distributions of the source and target domains are aligned. Then, the conditional distribution adaptation regularization term based on the maximum mean discrepancy is embedded into a broad learning system to obtain the conditional adaptation broad network (CABN). On the one hand, CABN can perform the class-level distribution adaptation on the domain-invariant features extracted by DAAN. On the other hand, the representation ability of the domain-invariant features expanded by CABN can be further enhanced. Experimental results on ten real hyperspectral data pairs show that, compared with the existing mainstream methods, DABAN can effectively utilize relevant source-domain information to assist in improving the classification accuracy of the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
cheunsor完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助www采纳,获得10
3秒前
3秒前
3秒前
3秒前
nn发布了新的文献求助10
4秒前
4秒前
CodeCraft应助杰2580采纳,获得10
5秒前
研小白完成签到,获得积分10
5秒前
开心夏真完成签到,获得积分10
5秒前
昏睡的蟠桃应助zzzzyyxxxx采纳,获得50
5秒前
失眠醉易完成签到,获得积分0
5秒前
junjun2011完成签到,获得积分10
6秒前
Drink发布了新的文献求助10
7秒前
Sudongdong发布了新的文献求助100
7秒前
7秒前
7秒前
7秒前
koitoyu发布了新的文献求助10
8秒前
8秒前
英姑应助居然采纳,获得10
8秒前
8秒前
隐形曼青应助零零落落采纳,获得10
8秒前
NexusExplorer应助后陡门的夏采纳,获得10
8秒前
小学生完成签到,获得积分10
8秒前
今后应助掺香采纳,获得10
9秒前
itsxm完成签到,获得积分10
9秒前
9秒前
能干汉堡完成签到,获得积分10
9秒前
haha发布了新的文献求助10
9秒前
冲冲冲完成签到 ,获得积分10
9秒前
疯狂的青亦完成签到,获得积分10
10秒前
10秒前
科研宋宋发布了新的文献求助10
10秒前
ywhys完成签到,获得积分20
11秒前
emile发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817577
求助须知:如何正确求助?哪些是违规求助? 3360882
关于积分的说明 10410010
捐赠科研通 3078935
什么是DOI,文献DOI怎么找? 1690894
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065