Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs.

放射科 胸片 胸部(昆虫解剖学)
作者
Seowoo Lee,Jae-Joon Yim,Nakwon Kwak,Yeon Joo Lee,Jung-Kyu Lee,Ji Yeon Lee,Ju Sang Kim,Young Ae Kang,Doosoo Jeon,Myoung Jin Jang,Jin Mo Goo,Soon Ho Yoon
出处
期刊:Radiology [Radiological Society of North America]
卷期号:301 (2): 435-442
标识
DOI:10.1148/radiol.2021210063
摘要

Background Determining the activity of pulmonary tuberculosis on chest radiographs is difficult. Purpose To develop a deep learning model to identify active pulmonary tuberculosis on chest radiographs. Materials and Methods Chest radiographs were retrospectively gathered from a multicenter consecutive cohort with pulmonary tuberculosis who were successfully treated between 2011 and 2017, along with normal radiographs to enrich a negative class. The pretreatment and posttreatment radiographs were labeled as positive and negative classes, respectively. A neural network was trained with those radiographs to calculate the probability of active versus healed tuberculosis. A single-center consecutive cohort (test set 1; 89 patients, 148 radiographs) and data from one multicenter randomized controlled trial (test set 2; 366 patients, 3774 radiographs) were used to test the model. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the model and of the four expert readers. Results In total, 6654 pre- and posttreatment radiographs from 3327 patients (mean age ± standard deviation, 55 years ± 19; 1884 men) with pulmonary tuberculosis and 3182 normal radiographs from as many patients (mean age, 53 years ± 14; 1629 men) were gathered. For test set 1, the model showed a higher AUC (0.83; 95% CI: 0.73, 0.89) than one pulmonologist (0.69; 95% CI: 0.61, 0.76; P < .001) and performed similarly to the other readers (AUC, 0.79-0.80; P = .14-.23). For 200 randomly selected radiographs from test set 2, the model had a higher AUC (0.84) than the pulmonologists (0.71 and 0.74; P < .001 and .01, respectively) and performed similarly to the radiologists (0.79 and 0.80; P = .08 and .06, respectively). The model output increased by 0.30 on average with a higher degree of smear positivity (95% CI: 0.20, 0.39; P < .001) and decreased during treatment (baseline, 3 months, and 6 months: 0.85, 0.51, and 0.26, respectively). Conclusion A deep learning model performed similarly to radiologists for accurately determining the activity of pulmonary tuberculosis on chest radiographs; it also was able to follow posttreatment changes. © RSNA, 2021 Online supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
4秒前
小白发布了新的文献求助10
6秒前
tomf完成签到,获得积分10
6秒前
糖心发布了新的文献求助10
7秒前
Tempo发布了新的文献求助10
10秒前
徐彬荣完成签到,获得积分10
11秒前
13秒前
健忘的向秋完成签到,获得积分10
14秒前
称心花生完成签到,获得积分20
14秒前
kkscanl发布了新的文献求助30
18秒前
thenafly完成签到,获得积分10
20秒前
阳光的夏槐完成签到,获得积分10
23秒前
Eva完成签到,获得积分10
24秒前
Lty完成签到,获得积分20
28秒前
28秒前
29秒前
nikki发布了新的文献求助10
31秒前
搜集达人应助jia采纳,获得10
32秒前
36秒前
Shan完成签到 ,获得积分10
37秒前
Cynric关注了科研通微信公众号
40秒前
42秒前
wander完成签到,获得积分10
46秒前
完美世界应助现实的画板采纳,获得10
50秒前
Zx完成签到 ,获得积分10
52秒前
52秒前
53秒前
53秒前
Cynric发布了新的文献求助10
55秒前
bkagyin应助羽墨空空采纳,获得10
55秒前
Violet完成签到,获得积分10
58秒前
李健的粉丝团团长应助drew采纳,获得10
1分钟前
1分钟前
1分钟前
牙瓜完成签到 ,获得积分10
1分钟前
万能图书馆应助infognet采纳,获得10
1分钟前
今天没有雨完成签到,获得积分10
1分钟前
完美麦片完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800289
求助须知:如何正确求助?哪些是违规求助? 3345565
关于积分的说明 10325834
捐赠科研通 3062031
什么是DOI,文献DOI怎么找? 1680717
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557