细菌纤维素
纳米纤维
材料科学
纳米复合材料
纤维素
MTT法
静电纺丝
Zeta电位
伤口愈合
生物相容性
极限抗拉强度
核化学
化学
复合材料
纳米技术
细胞生长
医学
聚合物
生物化学
纳米颗粒
外科
冶金
作者
Danial Nemati,Mohsen Ashjari,Hamid Rashedi,Fatemeh Yazdian,Mona Navaei‐Nigjeh
摘要
Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3 N4 /nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3 N4 and g-C3 N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3 N4 /nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3 N4 /nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3 N4 /nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI