亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly Supervised Deep Ordinal Cox Model for Survival Prediction From Whole-Slide Pathological Images.

模式识别(心理学) 接收机工作特性 序数回归 深度学习 人工神经网络 卷积神经网络 特征提取 特征(语言学) 上下文图像分类
作者
Wei Shao,Tongxin Wang,Zhi Huang,Zhi Han,Jie Zhang,Kun Huang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3739-3747 被引量:3
标识
DOI:10.1109/tmi.2021.3097319
摘要

Whole-Slide Histopathology Image (WSI) is generally considered the gold standard for cancer diagnosis and prognosis. Given the large inter-operator variation among pathologists, there is an imperative need to develop machine learning models based on WSIs for consistently predicting patient prognosis. The existing WSI-based prediction methods do not utilize the ordinal ranking loss to train the prognosis model, and thus cannot model the strong ordinal information among different patients in an efficient way. Another challenge is that a WSI is of large size (e.g., 100,000-by-100,000 pixels) with heterogeneous patterns but often only annotated with a single WSI-level label, which further complicates the training process. To address these challenges, we consider the ordinal characteristic of the survival process by adding a ranking-based regularization term on the Cox model and propose a weakly supervised deep ordinal Cox model (BDOCOX) for survival prediction from WSIs. Here, we generate amounts of bags from WSIs, and each bag is comprised of the image patches representing the heterogeneous patterns of WSIs, which is assumed to match the WSI-level labels for training the proposed model. The effectiveness of the proposed method is well validated by theoretical analysis as well as the prognosis and patient stratification results on three cancer datasets from The Cancer Genome Atlas (TCGA).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的秋尽完成签到 ,获得积分10
4秒前
5秒前
浮游应助科研通管家采纳,获得10
32秒前
小二郎应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
紫色奶萨完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
lezbj99发布了新的文献求助10
1分钟前
moodlunatic发布了新的文献求助20
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
domingo完成签到,获得积分10
2分钟前
2分钟前
2分钟前
lezbj99发布了新的文献求助10
2分钟前
科研通AI6应助moodlunatic采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
1a完成签到 ,获得积分10
3分钟前
3分钟前
ding应助二硫碘化钾采纳,获得10
3分钟前
ding应助马潇涵采纳,获得10
3分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
ZHH完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
我是老大应助废久采纳,获得10
5分钟前
lezbj99发布了新的文献求助10
5分钟前
5分钟前
lezbj99发布了新的文献求助10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522741
求助须知:如何正确求助?哪些是违规求助? 4613661
关于积分的说明 14539176
捐赠科研通 4551386
什么是DOI,文献DOI怎么找? 2494231
邀请新用户注册赠送积分活动 1475142
关于科研通互助平台的介绍 1446542