Indirect Z-scheme heterojunction of NH2-MIL-125(Ti) MOF/g-C3N4 nanocomposite with RGO solid electron mediator for efficient photocatalytic CO2 reduction to CO and CH4

光催化 材料科学 纳米复合材料 异质结 化学工程 电子转移 吸附 复合数 纳米技术 催化作用 光化学 化学 复合材料 光电子学 有机化学 工程类
作者
Riyadh Ramadhan Ikreedeegh,Muhammad Tahir
出处
期刊:Journal of environmental chemical engineering [Elsevier]
卷期号:9 (4): 105600-105600 被引量:133
标识
DOI:10.1016/j.jece.2021.105600
摘要

Well-designed Z-scheme photocatalyst of NH2-MIL-125(Ti) MOF coupled g-C3N4 with RGO mediator synthesized with a facile hydrothermal method has been investigated for stimulating photocatalytic CO2 reduction under visible light. The amino-functionalized Ti-based MOF boosted the photocatalytic efficiency due to its high surface area and porous structure. Moreover, the NH2-MIL-125(Ti) MOF has a great ability for CO2 gas adsorption. The novel RGO-linked g-C3N4/NH2-MIL-125(Ti) nanocomposite exhibited efficient photocatalytic CO2 conversion to CH4 and CO. The experimental results showed that CO was the predominant reaction product with a production of 383.79 μmol g−1 achieved after 4 h irradiation which is 5 and 2.5 times higher compared to pure g-C3N4 and zero-MOF g-C3N4-RGO composite, respectively. However, the composite also exhibited a CH4 evolution of 13.8 μmol g−1. The amino functionality provided the MOF with antenna-like reaction sites with high affinity to CO2 molecules which improved the photocatalytic reduction of CO2 towards high CO production selectivity. An effective spatial separation and transfer of photogenerated charge carriers was also obtained as a result of RGO incorporation which constructed an effective Z-scheme bridge for the transfer of charges and limiting the high recombination rate of g-C3N4. The stability analysis of the newly developed composite revealed a continuous production of CO and CH4 in multiple cycles without any obvious deactivation under visible light. This work provides a new approach for the construction of Z-scheme heterojunction composites that would be beneficial for further investigations in selective CO2 conversion to solar fuels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
gorgeous完成签到,获得积分10
1秒前
小白发布了新的文献求助10
2秒前
11发布了新的文献求助10
2秒前
2秒前
gaterina完成签到,获得积分10
2秒前
2秒前
谷雨秋发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
zz发布了新的文献求助10
4秒前
33完成签到,获得积分10
4秒前
都找到了发布了新的文献求助10
6秒前
6秒前
XY发布了新的文献求助10
7秒前
坚定蘑菇发布了新的文献求助10
7秒前
王jj发布了新的文献求助10
7秒前
盲点完成签到,获得积分10
8秒前
爱听歌的雁开完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
川普完成签到,获得积分20
11秒前
12秒前
12秒前
zz完成签到,获得积分20
12秒前
13秒前
13秒前
14秒前
14秒前
Zoe_Zhang发布了新的文献求助10
14秒前
川普发布了新的文献求助10
15秒前
LAVINE发布了新的文献求助10
15秒前
15秒前
15秒前
Ava应助22采纳,获得10
15秒前
七木发布了新的文献求助10
16秒前
vuluv发布了新的文献求助10
16秒前
17秒前
ccc完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662838
求助须知:如何正确求助?哪些是违规求助? 4845174
关于积分的说明 15101436
捐赠科研通 4821204
什么是DOI,文献DOI怎么找? 2580624
邀请新用户注册赠送积分活动 1534739
关于科研通互助平台的介绍 1493202