Visible-light-driven methane formation from CO2 with a molecular iron catalyst

催化作用 化学 人工光合作用 甲烷 量子产额 选择性 电化学 光化学 乙腈 产量(工程) 光催化 材料科学 有机化学 物理化学 物理 荧光 冶金 量子力学 电极
作者
Heng Rao,Luciana C. Schmidt,Julien Bonin,Marc Robert
出处
期刊:Nature [Springer Nature]
卷期号:548 (7665): 74-77 被引量:948
标识
DOI:10.1038/nature23016
摘要

Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
THM发布了新的文献求助10
1秒前
熊猫发布了新的文献求助10
2秒前
拼搏向上发布了新的文献求助10
2秒前
zzdd应助大哥大采纳,获得50
2秒前
量子星尘发布了新的文献求助10
2秒前
CodeCraft应助超级的爆米花采纳,获得30
2秒前
4秒前
4秒前
蓝羽发布了新的文献求助10
4秒前
高高钢铁侠完成签到,获得积分10
4秒前
李健的粉丝团团长应助RJM采纳,获得10
4秒前
5秒前
renyi完成签到 ,获得积分10
5秒前
zzdd应助江南之南采纳,获得10
5秒前
ding应助奇奇淼采纳,获得10
5秒前
SciGPT应助Godweless采纳,获得10
5秒前
狗贼发布了新的文献求助10
6秒前
爆米花应助小钵子甜酒采纳,获得10
6秒前
Jasper应助自信胡萝卜采纳,获得10
7秒前
7秒前
大模型应助zjw采纳,获得10
8秒前
8秒前
自由可兰完成签到 ,获得积分10
8秒前
8秒前
yzx完成签到 ,获得积分10
8秒前
豆子完成签到,获得积分10
8秒前
熊猫完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
科研通AI6应助shizi采纳,获得10
9秒前
10秒前
搜集达人应助niceday123采纳,获得10
10秒前
Ava应助海藻采纳,获得10
10秒前
小铃铛完成签到,获得积分10
11秒前
12秒前
浮浮世世发布了新的文献求助10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521034
求助须知:如何正确求助?哪些是违规求助? 4612542
关于积分的说明 14534186
捐赠科研通 4550083
什么是DOI,文献DOI怎么找? 2493413
邀请新用户注册赠送积分活动 1474570
关于科研通互助平台的介绍 1446126