CRISPR/Cas9 editing genome of extremophile Halomonas spp.

清脆的 Cas9 盐单胞菌属 极端微生物 基因组编辑 嗜盐菌 质粒 羟基烷酸 计算生物学 基因组 生物 基因 化学 遗传学 细菌 嗜热菌
作者
Qin Qin,Ling Chen,Yiqing Zhao,Tian Yang,Jin Yin,Yingying Guo,Guo Qiang Chen
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:47: 219-229 被引量:138
标识
DOI:10.1016/j.ymben.2018.03.018
摘要

Extremophiles are suitable chassis for developing the next generation industrial biotechnology (NGIB) due to their resistance to microbial contamination. However, engineering extremophiles are not an easy task. Halomonas, an industrially interesting halophile able to grow under unsterile and continuous conditions in large-scale processes, can only be engineered using suicide plasmid-mediated two-step homologous recombination which is very laborious and time-consuming (up to half a year). A convenient approach for the engineering of halophiles that can possibly be extended to other extremophiles is therefore urgently required. To meet this requirement, a rapid, efficient and scarless method via CRISPR/Cas9 system was developed in this study for genome editing in Halomonas. The method achieved the highest efficiency of 100%. When eight different mutants were constructed via this special CRISPR/Cas9 method to study the combinatorial influences of four different genes on the glucose catabolism in H. bluephagenesis TD01, it took only three weeks to complete the deletion and insertion of up to 4.5 kb DNA. H. bluephagenesis was designed to produce a microbial copolymer P(3HB-co-3HV) consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). The CRISPR/Cas9 was employed to delete the prpC gene in H. bluephagenesis TD01. Shake flask studies showed that the 3HV fraction in the copolymers increased approximately 16-folds, demonstrating enhanced effectiveness of the ΔprpC mutant to synthesize PHBV. This genome engineering strategy significantly speeds up the studies on Halomonas engineering, opening up a wide area for developing NGIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春晓发布了新的文献求助10
刚刚
安东尼发布了新的文献求助10
刚刚
科研通AI5应助xiaoyue采纳,获得10
1秒前
1秒前
zz发布了新的文献求助10
3秒前
galaxy发布了新的文献求助10
4秒前
郑旭辉发布了新的文献求助10
6秒前
眼药水完成签到,获得积分20
7秒前
7秒前
8秒前
KK完成签到 ,获得积分10
9秒前
周小鱼发布了新的文献求助10
9秒前
Simple完成签到,获得积分10
10秒前
眼药水发布了新的文献求助20
10秒前
ScholarZmm完成签到,获得积分10
11秒前
郑旭辉完成签到,获得积分10
12秒前
17发布了新的文献求助10
12秒前
12秒前
12秒前
科研通AI5应助春晓采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
15秒前
情怀应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
qiqi发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
orixero应助galaxy采纳,获得10
17秒前
SciGPT应助TK采纳,获得10
20秒前
开心的半仙完成签到 ,获得积分10
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451