Optimization design of the key parameters of McPherson suspension systems using generalized multi-dimension adaptive learning particle swarm optimization

瞬态(计算机编程) 控制理论(社会学) 粒子群优化 参数化复杂度 理论(学习稳定性) 稳态(化学) 灵敏度(控制系统) 悬挂(拓扑) 汽车操纵 计算机科学 工程类 模拟 控制工程 数学 人工智能 汽车工程 算法 机器学习 电子工程 操作系统 同伦 物理化学 化学 纯数学 控制(管理)
作者
Qi Gao,Jinzhi Feng,Songlin Zheng
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:233 (13): 3403-3423 被引量:15
标识
DOI:10.1177/0954407018824766
摘要

The performance parameters of suspension systems must be properly matched to ensure the handling and stability performance of a vehicle. Based on real vehicle measured data, a parameterized vehicle dynamic model is built, and the validity of the parameterized vehicle dynamic model is verified by comparing simulation results with real vehicle test results. Seven representative steady-state and transient single evaluation indicators of handling and stability of the vehicle are selected. The key parameters of McPherson suspension system, which significantly affects steady-state and transient handling and stability performance, are selected through a sensitivity analysis. Their contribution rates for each single evaluation indicator are calculated based on 81 simulation tests using the parameterized vehicle dynamic model. A comprehensive evaluation indicator system for the whole vehicle is established. This system contains the seven steady-state and transient single handling and stability evaluation indicators that are obtained using a quadratic response surface fitting for the selected key parameters. The comprehensive evaluation indicator system is used to show whether a vehicle has good steady-state and desirable transient responses. Moreover, a generalized multi-dimension adaptive learning particle swarm optimization is proposed to search for the global optimum of the comprehensive evaluation indicator system across the search space with rapid convergence. Optimization results show that a comprehensive handling and stability performance are improved, and simulation results of the parameterized vehicle dynamic model that is modified in accordance with the optimization results verify the improvement of the steady-state steering driving behavior and transient yaw response of the vehicle. In conclusion, the comprehensive evaluation indicator system is feasible, and the generalized multi-dimension adaptive learning particle swarm optimization is effective for the optimization design of the key parameters of the McPherson suspension system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zenoalter完成签到,获得积分10
1秒前
zzzh发布了新的文献求助10
2秒前
zuan发布了新的文献求助10
2秒前
3秒前
嘻嘻应助ramu采纳,获得10
3秒前
6秒前
Hello应助冰美式采纳,获得10
6秒前
ligq完成签到,获得积分10
6秒前
7秒前
7秒前
罗劲松完成签到,获得积分10
8秒前
9秒前
矢车菊完成签到 ,获得积分10
9秒前
Orange应助Rickstein采纳,获得10
10秒前
无花果应助zzzh采纳,获得10
10秒前
斯文败类应助ligq采纳,获得10
11秒前
12秒前
13秒前
善良晓博完成签到,获得积分10
13秒前
ebby发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
15秒前
yekindar发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
杨诗梦发布了新的文献求助10
18秒前
18秒前
w8816完成签到,获得积分10
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
暖暖发布了新的文献求助30
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
21秒前
Akim应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870452
求助须知:如何正确求助?哪些是违规求助? 3412639
关于积分的说明 10680272
捐赠科研通 3137063
什么是DOI,文献DOI怎么找? 1730577
邀请新用户注册赠送积分活动 834142
科研通“疑难数据库(出版商)”最低求助积分说明 781073