过电位
电催化剂
析氧
催化作用
电解质
电化学
溶解
分解水
金属
材料科学
合金
化学工程
化学物理
无机化学
化学
冶金
物理化学
复合材料
电极
工程类
光催化
生物化学
作者
Yancai Yao,Sulei Hu,Wenxing Chen,Zheng‐Qing Huang,Wei-Chen Wei,Tao Yao,Ruirui Liu,Ketao Zang,Xiaoqian Wang,Geng Wu,Wenjuan Yuan,Tongwei Yuan,Bai-Quan Zhu,Wei Liu,Zhijun Li,Dongsheng He,Zhenggang Xue,Yu Wang,Xusheng Zheng,Juncai Dong
出处
期刊:Nature Catalysis
[Nature Portfolio]
日期:2019-03-11
卷期号:2 (4): 304-313
被引量:953
标识
DOI:10.1038/s41929-019-0246-2
摘要
Single-atom precious metal catalysts hold the promise of perfect atom utilization, yet control of their activity and stability remains challenging. Here we show that engineering the electronic structure of atomically dispersed Ru1 on metal supports via compressive strain boosts the kinetically sluggish electrocatalytic oxygen evolution reaction (OER), and mitigates the degradation of Ru-based electrocatalysts in an acidic electrolyte. We construct a series of alloy-supported Ru1 using different PtCu alloys through sequential acid etching and electrochemical leaching, and find a volcano relation between OER activity and the lattice constant of the PtCu alloys. Our best catalyst, Ru1–Pt3Cu, delivers 90 mV lower overpotential to reach a current density of 10 mA cm−2, and an order of magnitude longer lifetime over that of commercial RuO2. Density functional theory investigations reveal that the compressive strain of the Ptskin shell engineers the electronic structure of the Ru1, allowing optimized binding of oxygen species and better resistance to over-oxidation and dissolution. While Ru-based electrocatalysts are among the most active for acidic water oxidation, they suffer from severe deactivation. Now, Yuen Wu, Wei-Xue Li and co-workers report a core–shell Ru1–Pt3Cu catalyst with surface-dispersed Ru atoms for a highly active and stable oxygen evolution reaction in acid electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI