亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning

垂体腺瘤 医学 人工智能 腺瘤 神经组阅片室 神经学 机器学习 放射科 病理 计算机科学 精神科
作者
Lorenzo Ugga,Renato Cuocolo,Domenico Solari,Elia Guadagno,Alessandra D’Amico,Teresa Somma,Paolo Cappabianca,Marialaura Del Basso De,Luigi Maria Cavallo,Arturo Brunetti
出处
期刊:Neuroradiology [Springer Science+Business Media]
卷期号:61 (12): 1365-1373 被引量:82
标识
DOI:10.1007/s00234-019-02266-1
摘要

Pituitary adenomas are among the most frequent intracranial tumors. They may exhibit clinically aggressive behavior, with recurrent disease and resistance to multimodal therapy. The ki-67 labeling index represents a proliferative marker which correlates with pituitary adenoma aggressiveness. Aim of our study was to assess the accuracy of machine learning analysis of texture-derived parameters from pituitary adenomas preoperative MRI for the prediction of ki-67 proliferation index class. A total of 89 patients who underwent an endoscopic endonasal procedure for pituitary adenoma removal with available ki-67 labeling index were included. From T2w MR images, 1128 quantitative imaging features were extracted. To select the most informative features, different supervised feature selection methods were employed. Subsequently, a k-nearest neighbors (k-NN) classifier was employed to predict macroadenoma high or low proliferation index. Algorithm validation was performed with a train-test approach. Of the 12 subsets derived from feature selection, the best performing one was constituted by the 4 highest correlating parameters at Pearson’s test. These all showed very good (ICC ≥ 0.85) inter-observer reproducibility. The overall accuracy of the k-NN in the test group was of 91.67% (33/36) of correctly classified patients. Machine learning analysis of texture-derived parameters from preoperative T2 MRI has proven to be effective for the prediction of pituitary macroadenomas ki-67 proliferation index class. This might aid the surgical strategy making a more accurate preoperative lesion classification and allow for a more focused and cost-effective follow-up and long-term management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweety01232发布了新的文献求助10
8秒前
科目三应助lovelife采纳,获得10
20秒前
小鉴完成签到,获得积分20
25秒前
小鉴关注了科研通微信公众号
38秒前
52秒前
52秒前
小鉴发布了新的文献求助30
59秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
深渊完成签到 ,获得积分10
1分钟前
1分钟前
聪明的云完成签到 ,获得积分10
2分钟前
2分钟前
lovelife发布了新的文献求助10
2分钟前
2分钟前
nnnick完成签到,获得积分0
3分钟前
沉沉完成签到 ,获得积分0
3分钟前
bji发布了新的文献求助10
3分钟前
科研花完成签到 ,获得积分10
3分钟前
3分钟前
bkagyin应助吃点水果保护局采纳,获得10
3分钟前
bji完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
A2QD发布了新的文献求助10
5分钟前
克泷完成签到 ,获得积分10
6分钟前
落叶捎来讯息完成签到 ,获得积分10
6分钟前
beplayer1完成签到,获得积分10
6分钟前
6分钟前
qqaqq发布了新的文献求助20
6分钟前
宝贝完成签到 ,获得积分10
6分钟前
英姑应助科研通管家采纳,获得10
7分钟前
科目三应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
叮当拉卡完成签到,获得积分20
7分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091736
求助须知:如何正确求助?哪些是违规求助? 3630437
关于积分的说明 11507594
捐赠科研通 3341860
什么是DOI,文献DOI怎么找? 1836931
邀请新用户注册赠送积分活动 904825
科研通“疑难数据库(出版商)”最低求助积分说明 822585