Level Set Evolution without Re-Initialization: A New Variational Formulation

计算机科学 水准点(测量) 算法 趋同(经济学) 集合(抽象数据类型)
作者
Chunming Li,Chenyang Xu,Changfeng Gui,M.D. Fox
出处
期刊:Computer Vision and Pattern Recognition 被引量:645
标识
DOI:10.1109/cvpr.2005.213
摘要

In this paper, we present a new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly re-initialization procedure. Our variational formulation consists of an internal energy term that penalizes the deviation of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image features, such as object boundaries. The resulting evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed variational level set formulation has three main advantages over the traditional level set formulations. First, a significantly larger time step can be used for numerically solving the evolution partial differential equation, and therefore speeds up the curve evolution. Second, the level set function can be initialized with general functions that are more efficient to construct and easier to use in practice than the widely used signed distance function. Third, the level set evolution in our formulation can be easily implemented by simple finite difference scheme and is computationally more efficient. The proposed algorithm has been applied to both simulated and real images with promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
waka发布了新的文献求助10
刚刚
yxl要顺利毕业_发6篇C完成签到,获得积分10
1秒前
于大本事发布了新的文献求助10
1秒前
梁业松完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
听曲散步完成签到,获得积分10
3秒前
一叶知秋应助nnnd77采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
坐看云起发布了新的文献求助10
4秒前
罗莹发布了新的文献求助10
5秒前
tll发布了新的文献求助30
5秒前
TS昵昵发布了新的文献求助10
6秒前
7秒前
加油完成签到,获得积分10
8秒前
8秒前
rudjs发布了新的文献求助10
9秒前
9秒前
9秒前
Schwann翠星石完成签到,获得积分10
9秒前
William发布了新的文献求助10
9秒前
10秒前
CipherSage应助玉雪晴儿采纳,获得10
10秒前
科研通AI5应助一只柯羊采纳,获得10
10秒前
10秒前
10秒前
10秒前
非而者厚应助李正纲采纳,获得10
10秒前
djy发布了新的文献求助10
11秒前
11秒前
荒天帝发布了新的文献求助10
11秒前
111完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747245
求助须知:如何正确求助?哪些是违规求助? 4094384
关于积分的说明 12667798
捐赠科研通 3806551
什么是DOI,文献DOI怎么找? 2101427
邀请新用户注册赠送积分活动 1126782
关于科研通互助平台的介绍 1003379