分类
计算机科学
场景统计
人工智能
对象(语法)
代表(政治)
比例(比率)
多样性(控制论)
范围(计算机科学)
视觉对象识别的认知神经科学
数据库
模式识别(心理学)
计算机视觉
感知
地理
地图学
神经科学
政治
政治学
法学
生物
程序设计语言
作者
Jianxiong Xiao,James Hays,Krista A. Ehinger,Aude Oliva,Antonio Torralba
标识
DOI:10.1109/cvpr.2010.5539970
摘要
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods. Additionally, we study a finer-grained scene representation to detect scenes embedded inside of larger scenes.
科研通智能强力驱动
Strongly Powered by AbleSci AI