Thermography and machine learning techniques for tomato freshness prediction

热成像 支持向量机 机器学习 人工神经网络 人工智能 计算机科学 环境科学 数学 红外线的 遥感 光学 地理 物理
作者
Jing Xie,Sheng‐Jen Hsieh,Hongjin Wang,Zuojun Tan
出处
期刊:Applied optics [The Optical Society]
卷期号:55 (34): D131-D131 被引量:1
标识
DOI:10.1364/ao.55.00d131
摘要

The United States and China are the world's leading tomato producers. Tomatoes account for over $2 billion annually in farm sales in the U.S. Tomatoes also rank as the world's 8th most valuable agricultural product, valued at $58 billion dollars annually, and quality is highly prized. Nondestructive technologies, such as optical inspection and near-infrared spectrum analysis, have been developed to estimate tomato freshness (also known as grades in USDA parlance). However, determining the freshness of tomatoes is still an open problem. This research (1) illustrates the principle of theory on why thermography might be able to reveal the internal state of the tomatoes and (2) investigates the application of machine learning techniques-artificial neural networks (ANNs) and support vector machines (SVMs)-in combination with transient step heating, and thermography for freshness prediction, which refers to how soon the tomatoes will decay. Infrared images were captured at a sampling frequency of 1 Hz during 40 s of heating followed by 160 s of cooling. The temperatures of the acquired images were plotted. Regions with higher temperature differences between fresh and less fresh (rotten within three days) tomatoes of approximately uniform size and shape were used as the input nodes for ANN and SVM models. The ANN model built using heating and cooling data was relatively optimal. The overall regression coefficient was 0.99. These results suggest that a combination of infrared thermal imaging and ANN modeling methods can be used to predict tomato freshness with higher accuracy than SVM models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助坚强的笑天采纳,获得10
刚刚
FashionBoy应助BlueBlue采纳,获得10
1秒前
1秒前
恒牙完成签到 ,获得积分10
1秒前
小鱼完成签到 ,获得积分10
2秒前
大模型应助D.Z采纳,获得10
2秒前
2秒前
爱吃鱼露发布了新的文献求助20
2秒前
百甲完成签到,获得积分10
3秒前
玉灵子完成签到,获得积分10
3秒前
lll应助sdniuidifod采纳,获得10
3秒前
3秒前
3秒前
砍了你的山楂树完成签到,获得积分10
4秒前
Jenny发布了新的文献求助10
5秒前
顾璆完成签到,获得积分10
5秒前
5秒前
Jiangzhibing发布了新的文献求助10
6秒前
6秒前
可爱的函函应助Jameson采纳,获得10
6秒前
邱志鸿完成签到,获得积分10
6秒前
r93527005发布了新的文献求助10
7秒前
7秒前
limz发布了新的文献求助10
8秒前
8秒前
8秒前
顾璆发布了新的文献求助10
8秒前
DEATH发布了新的文献求助10
9秒前
英俊的铭应助泽ze采纳,获得10
9秒前
9秒前
蘅大爷完成签到,获得积分10
9秒前
10秒前
11秒前
lll发布了新的文献求助10
11秒前
11秒前
迅速思萱完成签到,获得积分10
12秒前
搜集达人应助田...采纳,获得10
12秒前
柏林寒冬应助心心采纳,获得10
12秒前
jie.cr完成签到,获得积分10
13秒前
张起灵完成签到 ,获得积分10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049642
求助须知:如何正确求助?哪些是违规求助? 3587577
关于积分的说明 11399809
捐赠科研通 3314043
什么是DOI,文献DOI怎么找? 1823103
邀请新用户注册赠送积分活动 895013
科研通“疑难数据库(出版商)”最低求助积分说明 816663