已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Visualization and tissue classification of human breast cancer images using ultrahigh‐resolution OCT

光学相干层析成像 乳腺癌 人体乳房 癌症 医学 离体 生物医学工程 乳腺组织 病理 放射科 体内 生物 内科学 生物技术
作者
Xinwen Yao,Yu Gan,Ernest W. Chang,Hanina Hibshoosh,Sheldon Feldman,Christine P. Hendon
出处
期刊:Lasers in Surgery and Medicine [Wiley]
卷期号:49 (3): 258-269 被引量:52
标识
DOI:10.1002/lsm.22654
摘要

Breast cancer is one of the most common cancers, and recognized as the third leading cause of mortality in women. Optical coherence tomography (OCT) enables three dimensional visualization of biological tissue with micrometer level resolution at high speed, and can play an important role in early diagnosis and treatment guidance of breast cancer. In particular, ultra-high resolution (UHR) OCT provides images with better histological correlation. This paper compared UHR OCT performance with standard OCT in breast cancer imaging qualitatively and quantitatively. Automatic tissue classification algorithms were used to automatically detect invasive ductal carcinoma in ex vivo human breast tissue.Human breast tissues, including non-neoplastic/normal tissues from breast reduction and tumor samples from mastectomy specimens, were excised from patients at Columbia University Medical Center. The tissue specimens were imaged by two spectral domain OCT systems at different wavelengths: a home-built ultra-high resolution (UHR) OCT system at 800 nm (measured as 2.72 μm axial and 5.52 μm lateral) and a commercial OCT system at 1,300 nm with standard resolution (measured as 6.5 μm axial and 15 μm lateral), and their imaging performances were analyzed qualitatively. Using regional features derived from OCT images produced by the two systems, we developed an automated classification algorithm based on relevance vector machine (RVM) to differentiate hollow-structured adipose tissue against solid tissue. We further developed B-scan based features for RVM to classify invasive ductal carcinoma (IDC) against normal fibrous stroma tissue among OCT datasets produced by the two systems. For adipose classification, 32 UHR OCT B-scans from 9 normal specimens, and 28 standard OCT B-scans from 6 normal and 4 IDC specimens were employed. For IDC classification, 152 UHR OCT B-scans from 6 normal and 13 IDC specimens, and 104 standard OCT B-scans from 5 normal and 8 IDC specimens were employed.We have demonstrated that UHR OCT images can produce images with better feature delineation compared with images produced by 1,300 nm OCT system. UHR OCT images of a variety of tissue types found in human breast tissue were presented. With a limited number of datasets, we showed that both OCT systems can achieve a good accuracy in identifying adipose tissue. Classification in UHR OCT images achieved higher sensitivity (94%) and specificity (93%) of adipose tissue than the sensitivity (91%) and specificity (76%) in 1,300 nm OCT images. In IDC classification, similarly, we achieved better results with UHR OCT images, featured an overall accuracy of 84%, sensitivity of 89% and specificity of 71% in this preliminary study.In this study, we provided UHR OCT images of different normal and malignant breast tissue types, and qualitatively and quantitatively studied the texture and optical features from OCT images of human breast tissue at different resolutions. We developed an automated approach to differentiate adipose tissue, fibrous stroma, and IDC within human breast tissues. Our work may open the door toward automatic intraoperative OCT evaluation of early-stage breast cancer. Lasers Surg. Med. 49:258-269, 2017. © 2017 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助圆子采纳,获得10
1秒前
小蘑菇应助ZJQ采纳,获得10
1秒前
2秒前
chen发布了新的文献求助10
2秒前
4秒前
缥缈纲发布了新的文献求助30
9秒前
小棠完成签到 ,获得积分10
9秒前
hihi完成签到,获得积分20
10秒前
13秒前
大气的无颜关注了科研通微信公众号
14秒前
ZJQ发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
20秒前
赘婿应助liangmh采纳,获得10
21秒前
21秒前
Nirvan发布了新的文献求助10
23秒前
zzzz完成签到 ,获得积分10
23秒前
caia发布了新的文献求助10
23秒前
科目三应助zhouleiwang采纳,获得10
27秒前
29秒前
Orange应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
英俊的铭应助樊珩采纳,获得10
30秒前
30秒前
caia完成签到,获得积分10
30秒前
xuaotian发布了新的文献求助10
33秒前
33秒前
脑洞疼应助zhouleiwang采纳,获得10
33秒前
领导范儿应助abcdefg采纳,获得10
36秒前
39秒前
39秒前
40秒前
小陈爱科研完成签到,获得积分10
42秒前
6188完成签到 ,获得积分10
45秒前
mini发布了新的文献求助10
46秒前
mervynzcy完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324642
关于积分的说明 10219085
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440