Visualization and tissue classification of human breast cancer images using ultrahigh‐resolution OCT

光学相干层析成像 乳腺癌 人体乳房 癌症 医学 离体 生物医学工程 乳腺组织 病理 放射科 体内 生物 内科学 生物技术
作者
Xinwen Yao,Yu Gan,Ernest W. Chang,Hanina Hibshoosh,Sheldon Feldman,Christine P. Hendon
出处
期刊:Lasers in Surgery and Medicine [Wiley]
卷期号:49 (3): 258-269 被引量:52
标识
DOI:10.1002/lsm.22654
摘要

Breast cancer is one of the most common cancers, and recognized as the third leading cause of mortality in women. Optical coherence tomography (OCT) enables three dimensional visualization of biological tissue with micrometer level resolution at high speed, and can play an important role in early diagnosis and treatment guidance of breast cancer. In particular, ultra-high resolution (UHR) OCT provides images with better histological correlation. This paper compared UHR OCT performance with standard OCT in breast cancer imaging qualitatively and quantitatively. Automatic tissue classification algorithms were used to automatically detect invasive ductal carcinoma in ex vivo human breast tissue.Human breast tissues, including non-neoplastic/normal tissues from breast reduction and tumor samples from mastectomy specimens, were excised from patients at Columbia University Medical Center. The tissue specimens were imaged by two spectral domain OCT systems at different wavelengths: a home-built ultra-high resolution (UHR) OCT system at 800 nm (measured as 2.72 μm axial and 5.52 μm lateral) and a commercial OCT system at 1,300 nm with standard resolution (measured as 6.5 μm axial and 15 μm lateral), and their imaging performances were analyzed qualitatively. Using regional features derived from OCT images produced by the two systems, we developed an automated classification algorithm based on relevance vector machine (RVM) to differentiate hollow-structured adipose tissue against solid tissue. We further developed B-scan based features for RVM to classify invasive ductal carcinoma (IDC) against normal fibrous stroma tissue among OCT datasets produced by the two systems. For adipose classification, 32 UHR OCT B-scans from 9 normal specimens, and 28 standard OCT B-scans from 6 normal and 4 IDC specimens were employed. For IDC classification, 152 UHR OCT B-scans from 6 normal and 13 IDC specimens, and 104 standard OCT B-scans from 5 normal and 8 IDC specimens were employed.We have demonstrated that UHR OCT images can produce images with better feature delineation compared with images produced by 1,300 nm OCT system. UHR OCT images of a variety of tissue types found in human breast tissue were presented. With a limited number of datasets, we showed that both OCT systems can achieve a good accuracy in identifying adipose tissue. Classification in UHR OCT images achieved higher sensitivity (94%) and specificity (93%) of adipose tissue than the sensitivity (91%) and specificity (76%) in 1,300 nm OCT images. In IDC classification, similarly, we achieved better results with UHR OCT images, featured an overall accuracy of 84%, sensitivity of 89% and specificity of 71% in this preliminary study.In this study, we provided UHR OCT images of different normal and malignant breast tissue types, and qualitatively and quantitatively studied the texture and optical features from OCT images of human breast tissue at different resolutions. We developed an automated approach to differentiate adipose tissue, fibrous stroma, and IDC within human breast tissues. Our work may open the door toward automatic intraoperative OCT evaluation of early-stage breast cancer. Lasers Surg. Med. 49:258-269, 2017. © 2017 Wiley Periodicals, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
戴维少尉完成签到,获得积分10
1秒前
鑫鑫完成签到,获得积分10
1秒前
2秒前
shxygpz完成签到,获得积分10
2秒前
2秒前
霸气的半邪完成签到,获得积分10
2秒前
2秒前
Ll完成签到,获得积分10
3秒前
善学以致用应助2397采纳,获得10
3秒前
眼睛大的小熊猫完成签到,获得积分10
3秒前
3秒前
Lenacici完成签到,获得积分10
3秒前
3秒前
4秒前
曹国庆完成签到 ,获得积分10
4秒前
暮渔木鱼完成签到,获得积分20
5秒前
LiangWQ完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
机灵石头完成签到,获得积分10
6秒前
纪外绣完成签到,获得积分10
7秒前
祝笑柳完成签到,获得积分10
7秒前
高大以南完成签到,获得积分10
8秒前
Joshua发布了新的文献求助10
8秒前
幸福糖豆完成签到,获得积分10
8秒前
乐乐完成签到,获得积分10
8秒前
FK7完成签到,获得积分10
8秒前
愉快的牛氓完成签到 ,获得积分10
8秒前
尹冰露完成签到,获得积分10
8秒前
Ting完成签到,获得积分10
9秒前
abaaba完成签到,获得积分10
9秒前
白色的风车完成签到,获得积分10
11秒前
慕青应助怡然的怀莲采纳,获得10
11秒前
lan完成签到,获得积分10
12秒前
aikey完成签到 ,获得积分10
12秒前
12秒前
难过的小甜瓜完成签到,获得积分10
12秒前
欢呼香芋完成签到,获得积分10
12秒前
小宋爱科研完成签到 ,获得积分10
12秒前
研二上学期要发文章完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4655146
求助须知:如何正确求助?哪些是违规求助? 4040972
关于积分的说明 12496192
捐赠科研通 3732119
什么是DOI,文献DOI怎么找? 2060297
邀请新用户注册赠送积分活动 1090846
科研通“疑难数据库(出版商)”最低求助积分说明 971942