亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

接口(物质) 模式识别(心理学) 运动表象
作者
Vernon J. Lawhern,Amelia J. Solon,Nicholas R. Waytowich,Stephen M. Gordon,Chou P. Hung,Brent J. Lance
出处
期刊:arXiv: Learning 被引量:309
标识
DOI:10.1088/1741-2552/aace8c
摘要

Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional Neural Networks (CNNs), which have been used in computer vision and speech recognition, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than the reference algorithms when only limited training data is available. We demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks, suggesting that the observed performances were not due to artifact or noise sources in the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松鼠完成签到,获得积分10
4秒前
阔达凝天完成签到 ,获得积分10
7秒前
brwen完成签到,获得积分10
30秒前
abcd完成签到,获得积分10
32秒前
YifanWang应助科研通管家采纳,获得20
36秒前
小宋应助科研通管家采纳,获得30
36秒前
脑洞疼应助科研通管家采纳,获得10
36秒前
Vaibhav完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
49秒前
Jingjun完成签到,获得积分10
59秒前
刻苦的小土豆完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
oscar完成签到,获得积分10
1分钟前
NexusExplorer应助听话的寒天采纳,获得10
1分钟前
nowss完成签到,获得积分10
1分钟前
酷波er应助聪慧紫蓝采纳,获得10
1分钟前
1分钟前
聪慧紫蓝发布了新的文献求助10
1分钟前
charllar完成签到,获得积分10
2分钟前
2分钟前
大方依玉完成签到 ,获得积分10
2分钟前
charllar发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
大方依玉关注了科研通微信公众号
2分钟前
obsession完成签到 ,获得积分10
2分钟前
Veeee完成签到 ,获得积分10
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
852应助科研通管家采纳,获得10
2分钟前
小宋应助科研通管家采纳,获得30
2分钟前
2分钟前
小宋应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
小小章鱼发布了新的文献求助10
3分钟前
haprier完成签到 ,获得积分10
3分钟前
顾矜应助读书的时候采纳,获得10
3分钟前
3分钟前
guan完成签到,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4021219
求助须知:如何正确求助?哪些是违规求助? 3561388
关于积分的说明 11336450
捐赠科研通 3293459
什么是DOI,文献DOI怎么找? 1814143
邀请新用户注册赠送积分活动 889224
科研通“疑难数据库(出版商)”最低求助积分说明 812779