亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces

接口(物质) 模式识别(心理学) 运动表象
作者
Vernon J. Lawhern,Amelia J. Solon,Nicholas R. Waytowich,Stephen M. Gordon,Chou P. Hung,Brent J. Lance
出处
期刊:arXiv: Learning 被引量:309
标识
DOI:10.1088/1741-2552/aace8c
摘要

Brain computer interfaces (BCI) enable direct communication with a computer, using neural activity as the control signal. This neural signal is generally chosen from a variety of well-studied electroencephalogram (EEG) signals. For a given BCI paradigm, feature extractors and classifiers are tailored to the distinct characteristics of its expected EEG control signal, limiting its application to that specific signal. Convolutional Neural Networks (CNNs), which have been used in computer vision and speech recognition, have successfully been applied to EEG-based BCIs; however, they have mainly been applied to single BCI paradigms and thus it remains unclear how these architectures generalize to other paradigms. Here, we ask if we can design a single CNN architecture to accurately classify EEG signals from different BCI paradigms, while simultaneously being as compact as possible. In this work we introduce EEGNet, a compact convolutional network for EEG-based BCIs. We introduce the use of depthwise and separable convolutions to construct an EEG-specific model which encapsulates well-known EEG feature extraction concepts for BCI. We compare EEGNet to current state-of-the-art approaches across four BCI paradigms: P300 visual-evoked potentials, error-related negativity responses (ERN), movement-related cortical potentials (MRCP), and sensory motor rhythms (SMR). We show that EEGNet generalizes across paradigms better than the reference algorithms when only limited training data is available. We demonstrate three different approaches to visualize the contents of a trained EEGNet model to enable interpretation of the learned features. Our results suggest that EEGNet is robust enough to learn a wide variety of interpretable features over a range of BCI tasks, suggesting that the observed performances were not due to artifact or noise sources in the data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
melo完成签到,获得积分10
2秒前
科研通AI5应助读书的时候采纳,获得10
8秒前
一这那西应助科研通管家采纳,获得20
9秒前
李爱国应助读书的时候采纳,获得10
26秒前
科研通AI6应助小陈要发SCI采纳,获得10
38秒前
CodeCraft应助读书的时候采纳,获得10
44秒前
50秒前
量子星尘发布了新的文献求助10
56秒前
FashionBoy应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
天天快乐应助读书的时候采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
2分钟前
zx完成签到,获得积分10
2分钟前
zx发布了新的文献求助10
2分钟前
科研通AI6应助读书的时候采纳,获得10
2分钟前
小榕树完成签到,获得积分10
2分钟前
2分钟前
yuanquaner完成签到,获得积分10
2分钟前
隐形曼青应助读书的时候采纳,获得10
2分钟前
共享精神应助coollz采纳,获得10
2分钟前
yuanquaner发布了新的文献求助10
2分钟前
2分钟前
coollz发布了新的文献求助10
2分钟前
传奇3应助coollz采纳,获得10
2分钟前
3分钟前
科研通AI6应助zx采纳,获得10
3分钟前
完美路人发布了新的文献求助10
3分钟前
科研通AI6应助读书的时候采纳,获得10
3分钟前
李健应助xfcy采纳,获得10
3分钟前
orixero应助读书的时候采纳,获得10
3分钟前
zwang688完成签到,获得积分10
4分钟前
酷炫小馒头完成签到,获得积分10
4分钟前
4分钟前
NexusExplorer应助读书的时候采纳,获得10
4分钟前
4分钟前
Cupid发布了新的文献求助10
4分钟前
Cupid完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935381
求助须知:如何正确求助?哪些是违规求助? 4202793
关于积分的说明 13058829
捐赠科研通 3977706
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107340