A Review of Electrically-Assisted Manufacturing With Emphasis on Modeling and Understanding of the Electroplastic Effect

汽车工业 脆性 机械工程 成形性 材料科学 机械加工 航空航天 过程(计算) 结构材料 制造工程 计算机科学 工程类 冶金 操作系统 电气工程 航空航天工程
作者
Brandt J. Ruszkiewicz,Tyler J. Grimm,Ihab Ragai,Laine Mears,John T. Roth
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:139 (11) 被引量:101
标识
DOI:10.1115/1.4036716
摘要

Increasingly strict fuel efficiency standards have driven the aerospace and automotive industries to improve the fuel economy of their fleets. A key method for feasibly improving the fuel economy is by decreasing the weight, which requires the introduction of materials with high strength to weight ratios into airplane and vehicle designs. Many of these materials are not as formable or machinable as conventional low carbon steels, making production difficult when using traditional forming and machining strategies and capital. Electrical augmentation offers a potential solution to this dilemma through enhancing process capabilities and allowing for continued use of existing equipment. The use of electricity to aid in deformation of metallic materials is termed as electrically assisted manufacturing (EAM). The direct effect of electricity on the deformation of metallic materials is termed as electroplastic effect. This paper presents a summary of the current state-of-the-art in using electric current to augment existing manufacturing processes for processing of higher-strength materials. Advantages of this process include flow stress and forming force reduction, increased formability, decreased elastic recovery, fracture mode transformation from brittle to ductile, decreased overall process energy, and decreased cutting forces in machining. There is currently a lack of agreement as to the underlying mechanisms of the electroplastic effect. Therefore, this paper presents the four main existing theories and the experimental understanding of these theories, along with modeling approaches for understanding and predicting the electroplastic effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fighting完成签到,获得积分10
刚刚
Kevin完成签到,获得积分10
1秒前
haiyan发布了新的文献求助10
2秒前
樊小胖完成签到,获得积分10
2秒前
guijunmola完成签到 ,获得积分10
3秒前
Freddie完成签到,获得积分10
4秒前
NNUsusan完成签到,获得积分10
4秒前
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
aprilvanilla应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
aprilvanilla应助科研通管家采纳,获得10
7秒前
小墨应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776256
求助须知:如何正确求助?哪些是违规求助? 3321728
关于积分的说明 10207386
捐赠科研通 3036979
什么是DOI,文献DOI怎么找? 1666508
邀请新用户注册赠送积分活动 797517
科研通“疑难数据库(出版商)”最低求助积分说明 757868