EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning

计算机科学 卷积神经网络 脑电图 人工智能 极限学习机 预处理器 深度学习 分类器(UML) 特征(语言学) 机器学习 模式识别(心理学) 人工神经网络 心理学 语言学 哲学 精神科
作者
Muhammad Najam Dar,Muhammad Usman Akram,Rajamanickam Yuvaraj,Sajid Gul Khawaja,M. Murugappan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105327-105327 被引量:42
标识
DOI:10.1016/j.compbiomed.2022.105327
摘要

Electroencephalogram (EEG) based emotion classification reflects the actual and intrinsic emotional state, resulting in more reliable, natural, and meaningful human-computer interaction with applications in entertainment consumption behavior, interactive brain-computer interface, and monitoring of psychological health of patients in the domain of e-healthcare. Challenges of EEG-based emotion recognition in real-world applications are variations among experimental settings and cognitive health conditions. Parkinson's Disease (PD) is the second most common neurodegenerative disorder, resulting in impaired recognition and expression of emotions. The deficit of emotional expression poses challenges for the healthcare services provided to PD patients. This study proposes 1D-CRNN-ELM architecture, which combines one-dimensional Convolutional Recurrent Neural Network (1D-CRNN) with an Extreme Learning Machine (ELM), robust for the emotion detection of PD patients, also available for cross dataset learning with various emotions and experimental settings. In the proposed framework, after EEG preprocessing, the trained CRNN can use as a feature extractor with ELM as the classifier, and again this trained CRNN can be used for learning of new emotions set with fine-tuning of other datasets. This paper also applied cross dataset learning of emotions by training with PD patients datasets and fine-tuning with publicly available datasets of AMIGOS and SEED-IV, and vice versa. Random splitting of train and test data with 80 - 20 ratio resulted in an accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for HC with six basic emotion classes. Fine-tuning of trained architecture with four emotions of the SEED-IV dataset results in 92.5% accuracy. To validate the generalization of our results, leave one subject (patient) out cross-validation is also incorporated with mean accuracies of 95.84% for AMIGOS, 75.09% for PD, 77.85% for HC, and 84.97% for SEED-IV is achieved. Only a 1 - sec segment of EEG signal from 14 channels is enough to detect emotions with this performance. The proposed method outperforms state-of-the-art studies to classify EEG-based emotions with publicly available datasets, provide cross dataset learning, and validate the robustness of the deep learning framework for real-world application of psychological healthcare monitoring of Parkinson's disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1212完成签到,获得积分10
1秒前
zombleq发布了新的文献求助50
3秒前
汉堡包应助lzs采纳,获得10
5秒前
1212发布了新的文献求助10
5秒前
5秒前
jenningseastera应助letter采纳,获得10
6秒前
6秒前
he完成签到,获得积分10
6秒前
7秒前
9秒前
华北第一深情完成签到,获得积分10
11秒前
淡淡孤丝发布了新的文献求助10
11秒前
12秒前
杨少博完成签到,获得积分20
13秒前
酷炫的水蓝完成签到,获得积分10
13秒前
秋子发布了新的文献求助10
14秒前
16秒前
17秒前
DHL完成签到,获得积分10
17秒前
不吃胡萝卜完成签到 ,获得积分10
19秒前
20秒前
20秒前
淡淡孤丝完成签到,获得积分10
23秒前
511完成签到 ,获得积分10
25秒前
26秒前
26秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
32秒前
Hello应助科研通管家采纳,获得10
32秒前
PageSeo2应助科研通管家采纳,获得10
32秒前
震震应助科研通管家采纳,获得10
32秒前
32秒前
32秒前
Akim应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
天天快乐应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339