EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning

计算机科学 卷积神经网络 脑电图 人工智能 极限学习机 预处理器 深度学习 分类器(UML) 特征(语言学) 机器学习 模式识别(心理学) 人工神经网络 心理学 语言学 哲学 精神科
作者
Muhammad Najam Dar,Muhammad Usman Akram,Rajamanickam Yuvaraj,Sajid Gul Khawaja,M. Murugappan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:144: 105327-105327 被引量:43
标识
DOI:10.1016/j.compbiomed.2022.105327
摘要

Electroencephalogram (EEG) based emotion classification reflects the actual and intrinsic emotional state, resulting in more reliable, natural, and meaningful human-computer interaction with applications in entertainment consumption behavior, interactive brain-computer interface, and monitoring of psychological health of patients in the domain of e-healthcare. Challenges of EEG-based emotion recognition in real-world applications are variations among experimental settings and cognitive health conditions. Parkinson's Disease (PD) is the second most common neurodegenerative disorder, resulting in impaired recognition and expression of emotions. The deficit of emotional expression poses challenges for the healthcare services provided to PD patients. This study proposes 1D-CRNN-ELM architecture, which combines one-dimensional Convolutional Recurrent Neural Network (1D-CRNN) with an Extreme Learning Machine (ELM), robust for the emotion detection of PD patients, also available for cross dataset learning with various emotions and experimental settings. In the proposed framework, after EEG preprocessing, the trained CRNN can use as a feature extractor with ELM as the classifier, and again this trained CRNN can be used for learning of new emotions set with fine-tuning of other datasets. This paper also applied cross dataset learning of emotions by training with PD patients datasets and fine-tuning with publicly available datasets of AMIGOS and SEED-IV, and vice versa. Random splitting of train and test data with 80 - 20 ratio resulted in an accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for HC with six basic emotion classes. Fine-tuning of trained architecture with four emotions of the SEED-IV dataset results in 92.5% accuracy. To validate the generalization of our results, leave one subject (patient) out cross-validation is also incorporated with mean accuracies of 95.84% for AMIGOS, 75.09% for PD, 77.85% for HC, and 84.97% for SEED-IV is achieved. Only a 1 - sec segment of EEG signal from 14 channels is enough to detect emotions with this performance. The proposed method outperforms state-of-the-art studies to classify EEG-based emotions with publicly available datasets, provide cross dataset learning, and validate the robustness of the deep learning framework for real-world application of psychological healthcare monitoring of Parkinson's disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hobowei完成签到 ,获得积分10
刚刚
Glowingstones应助lumu采纳,获得30
1秒前
爱学习发布了新的文献求助10
1秒前
彭于晏应助Winfred采纳,获得10
2秒前
wbing发布了新的文献求助10
2秒前
小黑子fanfan完成签到,获得积分10
2秒前
3秒前
花落水自流完成签到,获得积分10
4秒前
5秒前
8秒前
8秒前
10秒前
10秒前
11秒前
小井完成签到,获得积分10
12秒前
爱吃香菜发布了新的文献求助10
13秒前
可爱的函函应助health__up采纳,获得10
13秒前
14秒前
小叙发布了新的文献求助10
14秒前
大个应助糊涂的大象采纳,获得10
15秒前
Orange应助Tamarin采纳,获得10
15秒前
17秒前
陳新儒完成签到,获得积分10
19秒前
vvvvvirus发布了新的文献求助10
20秒前
cui完成签到,获得积分10
21秒前
桀桀桀发布了新的文献求助10
23秒前
Hello应助一二采纳,获得10
24秒前
FashionBoy应助vvvvvirus采纳,获得10
24秒前
25秒前
25秒前
CipherSage应助碧蓝碧凡采纳,获得10
26秒前
巧克力完成签到 ,获得积分10
27秒前
狂奔弟弟完成签到 ,获得积分10
27秒前
爱学习的慕完成签到,获得积分10
28秒前
超级寻双发布了新的文献求助10
29秒前
殷昭慧发布了新的文献求助10
29秒前
暴躁平底锅完成签到,获得积分20
30秒前
巧克力关注了科研通微信公众号
30秒前
Jasper应助潇洒的友易采纳,获得30
31秒前
桐桐应助fengwx采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4338843
求助须知:如何正确求助?哪些是违规求助? 3847913
关于积分的说明 12017158
捐赠科研通 3489077
什么是DOI,文献DOI怎么找? 1914915
邀请新用户注册赠送积分活动 957797
科研通“疑难数据库(出版商)”最低求助积分说明 858184