EEG-based emotion charting for Parkinson's disease patients using Convolutional Recurrent Neural Networks and cross dataset learning

计算机科学 卷积神经网络 脑电图 人工智能 极限学习机 预处理器 深度学习 分类器(UML) 特征(语言学) 机器学习 模式识别(心理学) 人工神经网络 心理学 语言学 精神科 哲学
作者
Muhammad Najam Dar,Muhammad Usman Akram,Rajamanickam Yuvaraj,Sajid Gul Khawaja,M. Murugappan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:144: 105327-105327 被引量:54
标识
DOI:10.1016/j.compbiomed.2022.105327
摘要

Electroencephalogram (EEG) based emotion classification reflects the actual and intrinsic emotional state, resulting in more reliable, natural, and meaningful human-computer interaction with applications in entertainment consumption behavior, interactive brain-computer interface, and monitoring of psychological health of patients in the domain of e-healthcare. Challenges of EEG-based emotion recognition in real-world applications are variations among experimental settings and cognitive health conditions. Parkinson's Disease (PD) is the second most common neurodegenerative disorder, resulting in impaired recognition and expression of emotions. The deficit of emotional expression poses challenges for the healthcare services provided to PD patients. This study proposes 1D-CRNN-ELM architecture, which combines one-dimensional Convolutional Recurrent Neural Network (1D-CRNN) with an Extreme Learning Machine (ELM), robust for the emotion detection of PD patients, also available for cross dataset learning with various emotions and experimental settings. In the proposed framework, after EEG preprocessing, the trained CRNN can use as a feature extractor with ELM as the classifier, and again this trained CRNN can be used for learning of new emotions set with fine-tuning of other datasets. This paper also applied cross dataset learning of emotions by training with PD patients datasets and fine-tuning with publicly available datasets of AMIGOS and SEED-IV, and vice versa. Random splitting of train and test data with 80 - 20 ratio resulted in an accuracy of 97.75% for AMIGOS, 83.20% for PD, and 86.00% for HC with six basic emotion classes. Fine-tuning of trained architecture with four emotions of the SEED-IV dataset results in 92.5% accuracy. To validate the generalization of our results, leave one subject (patient) out cross-validation is also incorporated with mean accuracies of 95.84% for AMIGOS, 75.09% for PD, 77.85% for HC, and 84.97% for SEED-IV is achieved. Only a 1 - sec segment of EEG signal from 14 channels is enough to detect emotions with this performance. The proposed method outperforms state-of-the-art studies to classify EEG-based emotions with publicly available datasets, provide cross dataset learning, and validate the robustness of the deep learning framework for real-world application of psychological healthcare monitoring of Parkinson's disease patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kk发布了新的文献求助30
刚刚
LYY完成签到,获得积分10
1秒前
科研通AI2S应助严yee采纳,获得10
1秒前
竹林清风完成签到,获得积分10
2秒前
3秒前
语音助手完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
135完成签到 ,获得积分10
5秒前
LGS发布了新的文献求助10
6秒前
ZHANG完成签到,获得积分10
6秒前
一日不看书智商输给猪完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
降噪铅笔完成签到 ,获得积分10
8秒前
烟花应助ldy采纳,获得10
8秒前
txco发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
和谐夕阳完成签到,获得积分10
11秒前
飞快的尔容完成签到,获得积分10
12秒前
Yuanyuan发布了新的文献求助10
12秒前
打打应助mo采纳,获得10
12秒前
科研通AI6.1应助LGS采纳,获得10
13秒前
13秒前
雪碧没气完成签到,获得积分10
14秒前
研友_LX62KZ发布了新的文献求助10
14秒前
14秒前
时倾完成签到,获得积分10
14秒前
huahuahua发布了新的文献求助10
15秒前
15秒前
舞易完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467