Machine learning may accelerate the recognition and control of microplastic pollution: Future prospects

可解释性 计算机科学 机器学习 微塑料 大数据 人工智能 风险分析(工程) 数据挖掘 生态学 业务 生物
作者
Fubo Yu,Xiangang Hu
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:432: 128730-128730 被引量:56
标识
DOI:10.1016/j.jhazmat.2022.128730
摘要

Microplastics (MPs, sizes <5 mm) have been found to be widely distributed in various environments, such as marine, freshwater, terrestrial and atmospheric systems. Machine learning provides a potential solution for evaluating the ecological risks of MPs based on big data. Compared with traditional models, data-driven machine learning can accelerate the realization of the control of hazardous MPs and reduce the impact of MPs at both local and global scales. However, there are some urgent issues that should be resolved. For example, lack of MP databases and incomparable literatures causing the current MP data cannot fully support big data research. Therefore, it is imperative to formulate a set of standard and universal MP collection and testing protocols. For machine learning, predictions of large-scale MP distribution and the corresponding environmental risks remain lacking. To accelerate studies of MPs in the future, the methods and theories achieved for other particle pollutants, such as nanomaterials and aerosols, can be referenced. Beyond predication alone, the improvement of causality and interpretability of machine learning deserves attention in the studies of MP risks. Overall, this perspective paper provides insights for the development of machine learning methods in research on the environmental risks of MPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豆子完成签到,获得积分10
刚刚
Frank应助科研通管家采纳,获得10
1秒前
AH106应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
33应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
李健应助dd采纳,获得10
2秒前
2秒前
aggie关注了科研通微信公众号
2秒前
福尔摩云发布了新的文献求助30
2秒前
2秒前
3秒前
4秒前
陈冲发布了新的文献求助10
4秒前
科研通AI2S应助Odyssey_Cheung采纳,获得10
5秒前
97_完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
Clown发布了新的文献求助10
8秒前
欢喜寄云完成签到,获得积分10
10秒前
Nancy0818完成签到 ,获得积分10
10秒前
帅阳发布了新的文献求助30
11秒前
hbhbj发布了新的文献求助10
11秒前
阿冰发布了新的文献求助10
11秒前
xiaohu完成签到 ,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
豆子完成签到,获得积分10
15秒前
ww发布了新的文献求助10
16秒前
18秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451545
求助须知:如何正确求助?哪些是违规求助? 4559250
关于积分的说明 14273049
捐赠科研通 4483252
什么是DOI,文献DOI怎么找? 2455424
邀请新用户注册赠送积分活动 1446214
关于科研通互助平台的介绍 1422263