Deep learning inversion of Rayleigh-wave dispersion curves with geological constraints for near-surface investigations

反演(地质) 均方误差 地质学 算法 表面波 卷积神经网络 深度学习 数据集 反问题 计算机科学 地震学 人工智能 数学 数学分析 统计 电信 构造学
作者
Xinhua Chen,Jianghai Xia,Jingyin Pang,Changjiang Zhou,Binbin Mi
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:231 (1): 1-14 被引量:16
标识
DOI:10.1093/gji/ggac171
摘要

SUMMARY With the emergence of massive seismic data sets, surface wave methods using deep learning (DL) can effectively obtain shear wave velocity (Vs) structure for non-invasive near-surface investigations. Previous studies on DL inversion for deep geophysical investigation have a reference model to generate the training data set, while near-surface investigations have no model. Therefore, we systematically give a set of training data set generation processes. In the process, we use both prior information and the observed data to constrain the data set so that the DL inversion model can learn the local geological characteristics of the survey area. Because the space of inverted Vs models is constrained and thus narrowed, the inversion non-uniqueness can be reduced. Furthermore, the mean squared error, which is commonly used as loss function, may cause a poor fitting accuracy of phase velocities at high frequencies in near-surface applications. To make the fitting accuracy evenly in all frequency bands, we modify the loss function into a weighted mean squared relative error. We designed a convolutional neural network (CNN) to directly invert fundamental-mode Rayleigh-wave phase velocity for 1-D Vs models. To verify the feasibility and reliability of the proposed algorithm, we tested and compared it with the Levenberg–Marquardt (L-M) inversion and neighbourhood algorithm (NA) using field data from the Lawrence experiment (USA) and the Wuwei experiment (China). In both experiments, the inverted Vs models by CNN are consistent with the borehole information and are similar to that from existing methods after fine tuning of model parameters. The average root mean squares errors (RMSEs) of the CNN, NA and L-M methods are also similar, except in the Lawrence experiment, the RMSE of CNN is 17.33 m s−1 lower than previous studies using the L-M method. Moreover, the comparison of different loss functions for the Wuwei experiment indicates that the modified loss function can achieve higher accuracy than the traditional one. The proposed CNN is therefore ideally suited for rapid, repeated near-surface subsurface imaging and monitoring under similar geological settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李一诺完成签到 ,获得积分10
1秒前
1秒前
6161666661发布了新的文献求助10
3秒前
Ralmia发布了新的文献求助10
4秒前
berg发布了新的文献求助10
5秒前
菠萝吹雪完成签到,获得积分10
6秒前
孙文杰完成签到 ,获得积分10
6秒前
jzh发布了新的文献求助10
6秒前
所所应助南希采纳,获得10
6秒前
9秒前
FashionBoy应助syy采纳,获得10
12秒前
月光完成签到 ,获得积分10
13秒前
14秒前
14秒前
寒冷鸭子完成签到,获得积分10
15秒前
FashionBoy应助快乐的惜寒采纳,获得10
15秒前
16秒前
菜狗一只啊完成签到 ,获得积分10
17秒前
keKEYANTONG应助非而者厚采纳,获得20
17秒前
19秒前
20秒前
20秒前
21秒前
lvzhechen完成签到,获得积分10
21秒前
23秒前
Orange应助俭朴亦凝采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
berg完成签到,获得积分10
25秒前
Iuhob发布了新的文献求助10
26秒前
快乐的惜寒完成签到,获得积分10
26秒前
26秒前
李健的小迷弟应助轻舟采纳,获得10
28秒前
28秒前
学术菜鸡123完成签到,获得积分10
30秒前
小满发布了新的文献求助10
31秒前
33秒前
38秒前
研友_VZG7GZ应助Brocade采纳,获得20
39秒前
三三完成签到 ,获得积分10
41秒前
青梧完成签到,获得积分10
42秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874500
求助须知:如何正确求助?哪些是违规求助? 3416800
关于积分的说明 10700664
捐赠科研通 3141070
什么是DOI,文献DOI怎么找? 1733129
邀请新用户注册赠送积分活动 835783
科研通“疑难数据库(出版商)”最低求助积分说明 782258