Diagnosis of Subcortical Ischemic Vascular Cognitive Impairment With No Dementia Using Radiomics of Cerebral Cortex and Subcortical Nuclei in High-Resolution T1-Weighted MR Imaging

医学 认知障碍 痴呆 磁共振成像 大脑皮层 神经科学 神经影像学 血管性痴呆 病理 放射科 内科学 心理学 疾病 精神科
作者
Bo Liu,Shan Meng,Jie Cheng,Yan Zeng,Daiquan Zhou,Xiaojuan Deng,Lian-qin Kuang,Xiaojia Wu,Lin Tang,Haolin Wang,Huan Liu,Chen Liu,Chuanming Li
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:5
标识
DOI:10.3389/fonc.2022.852726
摘要

To investigate whether the combination of radiomics derived from brain high-resolution T1-weighted imaging and automatic machine learning could diagnose subcortical ischemic vascular cognitive impairment with no dementia (SIVCIND) accurately. A total of 116 right-handed participants involving 40 SIVCIND patients and 76 gender-, age-, and educational experience-matched normal controls (NM) were recruited. A total of 7,106 quantitative features from the bilateral thalamus, hippocampus, globus pallidus, amygdala, nucleus accumbens, putamen, caudate nucleus, and 148 areas of the cerebral cortex were automatically calculated from each subject. Six methods including least absolute shrinkage and selection operator (LASSO) were utilized to lessen the redundancy of features. Three supervised machine learning approaches of logistic regression (LR), random forest (RF), and support vector machine (SVM) employing 5-fold cross-validation were used to train and establish diagnosis models, and 10 times 10-fold cross-validation was used to evaluate the generalization performance of each model. Correlation analysis was performed between the optimal features and the neuropsychological scores of the SIVCIND patients. Thirteen features from the right amygdala, right hippocampus, left caudate nucleus, left putamen, left thalamus, and bilateral nucleus accumbens were included in the optimal subset. Among all the three models, the RF produced the highest diagnostic performance with an area under the receiver operator characteristic curve (AUC) of 0.990 and an accuracy of 0.948. According to the correlation analysis, the radiomics features of the right amygdala, left caudate nucleus, left putamen, and left thalamus were found to be significantly correlated with the neuropsychological scores of the SIVCIND patients. The combination of radiomics derived from brain high-resolution T1-weighted imaging and machine learning could diagnose SIVCIND accurately and automatically. The optimal radiomics features are mostly located in the right amygdala, left caudate nucleus, left putamen, and left thalamus, which might be new biomarkers of SIVCIND.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
憨寒发布了新的文献求助20
刚刚
ZZZ发布了新的文献求助30
刚刚
Huanting发布了新的文献求助10
1秒前
1秒前
戈惜完成签到 ,获得积分10
2秒前
2秒前
韩金龙应助axiba采纳,获得10
3秒前
Raymond完成签到 ,获得积分10
4秒前
科研通AI5应助lor采纳,获得10
5秒前
天天快乐应助郭郭采纳,获得10
5秒前
昏睡的乌冬面完成签到 ,获得积分10
6秒前
不懈奋进应助热情勒采纳,获得30
7秒前
7秒前
7秒前
sanmu发布了新的文献求助100
8秒前
8秒前
9秒前
小田完成签到,获得积分10
9秒前
大海很蓝发布了新的文献求助10
10秒前
干净的凡桃完成签到,获得积分10
11秒前
韩金龙应助尘南浔采纳,获得20
11秒前
了又柳完成签到 ,获得积分10
11秒前
12秒前
完美世界应助100采纳,获得10
14秒前
15秒前
15秒前
知己完成签到,获得积分10
15秒前
16秒前
科目三应助粥粥卷采纳,获得10
16秒前
18秒前
18秒前
郭郭完成签到,获得积分10
19秒前
Li发布了新的文献求助10
20秒前
雷小仙儿发布了新的文献求助10
20秒前
Akim应助yzxzdm采纳,获得20
20秒前
lqq完成签到,获得积分10
22秒前
所所应助大海很蓝采纳,获得10
22秒前
郭郭发布了新的文献求助10
23秒前
科研通AI5应助柿子采纳,获得10
25秒前
闵天佑发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787081
求助须知:如何正确求助?哪些是违规求助? 3332740
关于积分的说明 10257327
捐赠科研通 3048149
什么是DOI,文献DOI怎么找? 1672981
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271