清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of saline landscapes from an integrated SVM approach from a novel 3-D classification schema using Sentinel-1 dual-polarized SAR data

支持向量机 模式(遗传算法) 合成孔径雷达 鉴定(生物学) 人工智能 双偏振干涉法 模式识别(心理学) 遥感 计算机科学 地质学 机器学习 电信 天线(收音机) 植物 生物
作者
Shoba Periasamy,Kokila Priya Ravi,Kevin Tansey
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:279: 113144-113144 被引量:22
标识
DOI:10.1016/j.rse.2022.113144
摘要

This study presented an integrated SVM classification method that investigated the relationship between intrinsic scattering attributes of the surface features and the conductivity characteristics of the soil in the newly proposed two- and three-dimensional classification (2D and 3D) schema to classify the saline landscape. The study was conducted in the Vellore district, Tamil Nadu, which is composed of heterogeneous saline landforms due to the active geological processes and anthropogenic activities. The intensity products of Sentinel-1 data (VV + VH) of C-band frequency were employed in the present study. The SVM with linear kernel has outperformed the other models, namely random forest (RF), naive Bayes (NB), and K-Nearest Neighbour (k−NN), in performing the broad level of classification from the 2D classification schema (SVMOA = 84.2%, RFOA = 80.4%, k-NNOA = 78.8%, NBOA = 68.4%). The soil EC values derived from the dielectric loss measurements (R2 = 0.79, ρ = 0.018, and α=95%) were used to introduce the integrated SVM approach in the 3D schema to further breakdown the mapped classes into non-saline (NS) (soil EC ≤ 2 ds/cm), slightly saline (SS) (soil EC = 2.1 to 4 ds/cm) and moderately saline (MS) (soil EC = 4.1 to 8 ds/cm) categories. The overall performance of the integrated SVM approach implemented for the 3D classification schema (F1 = 0.80) was found to be satisfactory, but with an associated uncertainty majorly from MS (Precision = 0.52, F1 = 0.69), SS (Recall = 0.09, F1 = 0.15), and NS waterbodies (Recall = 0.18, F1 = 0.29) as shown in the Precision-Recall graph (AUCPR3D = 0.62). However, with the promising performance level demonstrated for the other nine classes such as NS, SS, and MS wet soil (F1 = 0.92, 0.92, 0.96), healthy plants (F1 = 0.83), salt-tolerant plants under SS and MS conditions (F1 = 0.83, 0.88), and waterlogged vegetation under NS, SS, and MS conditions (F1 = 0.82, 0.83, 0.83), the proposed classification scheme becomes an effective method to map saline and non-saline features from dual-polarimetric SAR data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
Shining_Wu发布了新的文献求助30
20秒前
充电宝应助Shining_Wu采纳,获得10
30秒前
Kaiying0310发布了新的文献求助10
40秒前
机灵自中发布了新的文献求助10
45秒前
digger2023完成签到 ,获得积分10
47秒前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
机灵自中完成签到,获得积分10
1分钟前
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
1分钟前
冷傲半邪发布了新的文献求助150
1分钟前
1分钟前
1分钟前
啊咧发布了新的文献求助10
1分钟前
2分钟前
2分钟前
奇拉维特完成签到 ,获得积分10
2分钟前
fox完成签到 ,获得积分10
2分钟前
实验体8567号完成签到,获得积分10
2分钟前
个性归尘举报嘛呱求助涉嫌违规
2分钟前
tlh完成签到 ,获得积分10
2分钟前
2分钟前
啊咧完成签到,获得积分10
3分钟前
海人完成签到 ,获得积分10
3分钟前
JamesPei应助啊咧采纳,获得10
3分钟前
3分钟前
小平发布了新的文献求助10
3分钟前
poki完成签到 ,获得积分10
3分钟前
小平完成签到,获得积分10
3分钟前
4分钟前
张国麒完成签到 ,获得积分10
5分钟前
萧奕尘完成签到,获得积分10
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
xingsixs完成签到 ,获得积分10
6分钟前
6分钟前
orixero应助Caleb采纳,获得10
6分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702226
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101