亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit

材料科学 钝化 胶体 化学工程 纳米晶 钙钛矿(结构) 纳米技术 光电子学 图层(电子) 工程类
作者
Zicheng Li,Can Wang,Ping‐Ping Sun,Zhihao Zhang,Qin Zhou,Yitian Du,Jianbin Xu,Yibo Chen,Qiu Xiong,Liming Ding,Mohammad Khaja Nazeeruddin,Peng Gao
出处
期刊:Nano Energy [Elsevier]
卷期号:100: 107468-107468 被引量:59
标识
DOI:10.1016/j.nanoen.2022.107468
摘要

SnO2-based electron transport layers (ETLs) offer outstanding band alignment, excellent chemical and UV stability, high transmittance, high conductivity, and processability at low temperatures. However, unfortunately, the state-of-the-art SnO2 colloid precursor suffered from agglomeration over time and structural defects such as dangling hydroxyl groups and oxygen vacancies, which deteriorate both the morphology and electronic quality of the resulting ETL. Especially, these trap states near the valence band can hinder charge extraction and transport of electrons to couple with non-radiative recombination loss. Here, we introduce a novel WO3 @SnO2 nanocomposite ETL, which is synthesized by in situ peptizations of WO3 in commercial alkaline SnO2 colloid nanocrystals. The hydrated (peptized) WO3 forms H2WO4 (WO42-) to effectively stabilize the SnO2 nanocrystals in the dispersion and bind to the defect sites. Intriguingly, the H2WO4 converts back to the WO3 phase to form nano-heterostructured composite with SnO2 particles during the process of film fabrication, further promoting passivation and charge extraction. Through the novel method, we could achieve molecular level passivation of SnO2 layer by WO3, and a power conversion efficiency of 23.6% for a 0.1 cm2 PSC device with ultra-high FF of 85.8% was demonstrated. Furthermore, a modified detailed balance model was used to verify the drastically lessened surface & bulk defect-induced recombination loss in WO3 @SnO2 based devices. Finally, the corresponding unencapsulated cell retained ~91% of its initial efficiency after 2000 h of damp exposure. This work provides a promising method to access the Shockley–Queisser limit of fill factor for single-junction PSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ceeray23应助科研通管家采纳,获得10
52秒前
ceeray23应助科研通管家采纳,获得10
52秒前
ceeray23应助科研通管家采纳,获得10
52秒前
田様应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
ceeray23应助科研通管家采纳,获得10
52秒前
1分钟前
TEMPO发布了新的文献求助10
1分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
今后应助George采纳,获得10
2分钟前
cc完成签到,获得积分10
3分钟前
3分钟前
zwb完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
Thanks完成签到 ,获得积分10
5分钟前
5分钟前
George发布了新的文献求助10
5分钟前
George完成签到,获得积分10
5分钟前
努力的淼淼完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
深情安青应助YUkiii采纳,获得10
6分钟前
6分钟前
lawang发布了新的文献求助10
6分钟前
bono完成签到 ,获得积分10
6分钟前
CC完成签到,获得积分10
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
mingjiang发布了新的文献求助10
6分钟前
mingjiang完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650979
求助须知:如何正确求助?哪些是违规求助? 4782508
关于积分的说明 15052886
捐赠科研通 4809757
什么是DOI,文献DOI怎么找? 2572573
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585