In-situ peptization of WO3 in alkaline SnO2 colloid for stable perovskite solar cells with record fill-factor approaching the shockley–queisser limit

材料科学 钝化 胶体 化学工程 纳米晶 钙钛矿(结构) 纳米技术 光电子学 图层(电子) 工程类
作者
Zicheng Li,Can Wang,Ping‐Ping Sun,Zhihao Zhang,Qin Zhou,Yitian Du,Jianbin Xu,Yibo Chen,Qiu Xiong,Liming Ding,Mohammad Khaja Nazeeruddin,Peng Gao
出处
期刊:Nano Energy [Elsevier BV]
卷期号:100: 107468-107468 被引量:54
标识
DOI:10.1016/j.nanoen.2022.107468
摘要

SnO2-based electron transport layers (ETLs) offer outstanding band alignment, excellent chemical and UV stability, high transmittance, high conductivity, and processability at low temperatures. However, unfortunately, the state-of-the-art SnO2 colloid precursor suffered from agglomeration over time and structural defects such as dangling hydroxyl groups and oxygen vacancies, which deteriorate both the morphology and electronic quality of the resulting ETL. Especially, these trap states near the valence band can hinder charge extraction and transport of electrons to couple with non-radiative recombination loss. Here, we introduce a novel WO3 @SnO2 nanocomposite ETL, which is synthesized by in situ peptizations of WO3 in commercial alkaline SnO2 colloid nanocrystals. The hydrated (peptized) WO3 forms H2WO4 (WO42-) to effectively stabilize the SnO2 nanocrystals in the dispersion and bind to the defect sites. Intriguingly, the H2WO4 converts back to the WO3 phase to form nano-heterostructured composite with SnO2 particles during the process of film fabrication, further promoting passivation and charge extraction. Through the novel method, we could achieve molecular level passivation of SnO2 layer by WO3, and a power conversion efficiency of 23.6% for a 0.1 cm2 PSC device with ultra-high FF of 85.8% was demonstrated. Furthermore, a modified detailed balance model was used to verify the drastically lessened surface & bulk defect-induced recombination loss in WO3 @SnO2 based devices. Finally, the corresponding unencapsulated cell retained ~91% of its initial efficiency after 2000 h of damp exposure. This work provides a promising method to access the Shockley–Queisser limit of fill factor for single-junction PSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DDDD发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
xiaolu发布了新的文献求助10
5秒前
5秒前
所所应助安详的白山采纳,获得10
5秒前
冷傲的醉薇完成签到,获得积分10
5秒前
共享精神应助强劲采纳,获得20
5秒前
7秒前
7秒前
QIQI发布了新的文献求助10
7秒前
Marilyn完成签到,获得积分10
7秒前
明亮的冰颜完成签到,获得积分10
8秒前
bobo发布了新的文献求助10
8秒前
深空发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
向阳花开完成签到,获得积分10
11秒前
小二郎应助勤劳访烟采纳,获得30
11秒前
13秒前
Ying发布了新的文献求助10
13秒前
14秒前
15秒前
李健应助寒_采纳,获得10
16秒前
dm完成签到,获得积分10
17秒前
隐形曼青应助Fuchen采纳,获得10
17秒前
强劲发布了新的文献求助20
18秒前
核桃发布了新的文献求助10
19秒前
DDDD发布了新的文献求助10
19秒前
20秒前
成就的小土豆完成签到,获得积分10
21秒前
21秒前
在水一方应助dm采纳,获得30
21秒前
21秒前
静推氯化钾完成签到,获得积分10
23秒前
俏皮代丝发布了新的文献求助10
24秒前
皮蛋完成签到,获得积分10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241150
求助须知:如何正确求助?哪些是违规求助? 3774831
关于积分的说明 11854333
捐赠科研通 3429785
什么是DOI,文献DOI怎么找? 1882581
邀请新用户注册赠送积分活动 934419
科研通“疑难数据库(出版商)”最低求助积分说明 841000