A highly efficient axial coordinated CoN5 electrocatalyst via pyrolysis-free strategy for alkaline polymer electrolyte fuel cells

材料科学 热解 电催化剂 聚合物 燃料电池 聚合物电解质 电解质 电化学 化学工程 无机化学 电极 物理化学 化学 复合材料 离子电导率 工程类
作者
Bolong Yang,Xueli Li,Qian Cheng,Xudong Jia,Yujia Liu,Zhonghua Xiang
出处
期刊:Nano Energy [Elsevier]
卷期号:101: 107565-107565 被引量:68
标识
DOI:10.1016/j.nanoen.2022.107565
摘要

Atomically dispersed Co-N-C materials represent the promising alternatives to precious metal-based catalysts for oxygen reduction reactions (ORR), due to the abundance and low cost of their constituent elements with maximized atom utilization. However, boosting their performances by modulating the active site structure still remains a challenge. Herein we have reported a pyrolysis-free synthetic method to prepare a new ORR catalyst with Co-N 5 active sites by using nitrogen-functionalized reduced graphene oxide to anchor Co-Porphyrin molecules and provide the axial ligand for the cobalt center. The ORR half-wave potential of the obtained catalyst reached 0.908 V, and the maximum power density was significantly increased by 1.63 times compared with the catalyst with traditional Co-N 4 active sites in alkaline polymer electrolyte fuel cells (APEFCs). Combined with density functional theory (DFT) calculations and electrochemical analysis, the results show that the electronic and geometric structure are remarkably changed after the Co 3d orbitals are rehybridized with the axially coordinated ligand orbitals, which greatly increases the rate of ORR. Importantly, in - situ Raman spectroscopy can dynamically track the conversion of Co-OH and Co-O species, further revealing that Co-N 5 is the active site and electron localization strategy induced by axial Co-N coordination can enhance the O 2 adsorption and activation, thus boosting ORR performance. Therefore, our research provides an atomic-level insight into the relationship between the electronic structure of the active center and the ORR performance and guidance for the rational design of high-efficiency electrocatalysts. A novel ORR catalyst with Co-N 5 active sites was prepared by using a pyrolysis-free synthetic method, electron localization strategy induced by axial Co-N coordination, which can enhance the O 2 adsorption and activation, thus boosts ORR performance. • Axial coordinated CoN 5 structures were prepared via a pyrolysis-free synthetic method. • Power density using CoN 5 MEA exhibits a 1.63 times increment compared with the traditional CoN 4 MEA. • In-situ Raman spectroscopy can dynamically track the conversion of Co-OH and Co-O species, further revealing that Co-N 5 were the active sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainbow0224完成签到,获得积分10
刚刚
ZO发布了新的文献求助10
刚刚
小刘应助执着谷兰采纳,获得50
1秒前
1秒前
2秒前
CHINA_C13发布了新的文献求助10
2秒前
2秒前
甘甘甘甘完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
顾矜应助Mister.WangK采纳,获得30
5秒前
JamesPei应助张昌辉采纳,获得10
5秒前
zzzcxxx发布了新的文献求助10
5秒前
zhang完成签到,获得积分20
6秒前
英吉利25发布了新的文献求助10
6秒前
6秒前
6秒前
chili完成签到,获得积分10
6秒前
7秒前
7秒前
pluto应助可爱的怀绿采纳,获得10
7秒前
SciGPT应助光亮的莺采纳,获得10
7秒前
江湖护卫舰应助淡然冬灵采纳,获得10
8秒前
爆米花应助时来运转采纳,获得10
8秒前
哈哈哈驳回了iNk应助
8秒前
ZO完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
安安完成签到,获得积分10
10秒前
10秒前
orixero应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
迷人的长颈鹿应助saber采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473591
求助须知:如何正确求助?哪些是违规求助? 4575682
关于积分的说明 14353923
捐赠科研通 4503208
什么是DOI,文献DOI怎么找? 2467556
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429362