Degradation of Li3V2(PO4)3-based full-cells containing Li4Ti5O12 or Li3.2V0.8Si0.2O4 anodes modeled by charge-discharge cycling simulations

阳极 电解质 阴极 降级(电信) 材料科学 分解 电极 化学工程 分析化学(期刊) 化学
作者
Yu Chikaoka,Reiko Okuda,Taiga Hashimoto,Masafumi Kuwao,Wako Naoi,Etsuro Iwama,Katsuhiko Naoi
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:423: 140558-140558 被引量:3
标识
DOI:10.1016/j.electacta.2022.140558
摘要

Li3V2(PO4)3 (LVP) has been considered as a promising cathode material for high-power energy-storage devices because of its high ionic conductivity, good stability, and excellent safety profile. However, LVP-cathode-based devices are infamous for a poor cyclability, due to reductive decomposition of the electrolyte at the counterpart anode during cycling; this is induced by small quantities of vanadium ions that leach from the LVP. To overcome this issue, a deeper understanding of the degradation reaction, which is dependent on the anode reaction potential and the states of charge (SOC), is required. In this study, we constructed two types of LVP-based full-cells (Li4Ti5O12 (LTO)//LVP and Li3.2V0.8Si0.2O4 (LVSiO)//LVP) to investigate the effect of the anode reaction potential on the electrolyte decomposition and cycling performance; the former cell contains a high-reaction-potential anode (1.55 V vs. Li/Li+), while the latter contains a low-reaction-potential anode (0.4–1.3 V vs. Li/Li+). The capacity degradation modes of these full-cells were evaluated using simple charge–discharge cycling simulations based on the coulombic efficiency, capacity decay, and degree of lithium-ion pre-doping of the electrode materials. Simulation studies indicate that the degradation of LTO//LVP is due to the low coulombic efficiency without capacity decay at the LTO anode, whereas the degradation of LVSiO//LVP is due to the low coulombic efficiency with capacity decay at the LVSiO anode. The simulated results were fully supported by experimental and electron microscopic observations. Based on these findings, we mitigated the side reactions arising from leached vanadium-ions using lithium pre-doping and a LiBF4 electrolyte, which resulted in an increase in the capacity retention for both types of full-cells to values of 84–98% after 1000 cycles. These insights provide guidance regarding the degradation modes and potential remedies for increasing the performance of a wide range of battery systems and not just LVP-based systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权志龙完成签到,获得积分10
1秒前
wanci应助科研顺风采纳,获得10
1秒前
xiuqing董完成签到,获得积分10
1秒前
CC完成签到,获得积分10
2秒前
2秒前
空白掉落完成签到,获得积分10
2秒前
3秒前
wanci应助细胞不凋王女士采纳,获得30
3秒前
ding应助维尼采纳,获得10
3秒前
王玉河发布了新的文献求助10
3秒前
英俊的铭应助廖少跑不快采纳,获得10
3秒前
害羞采萱完成签到,获得积分10
4秒前
4秒前
6秒前
Sunny完成签到,获得积分10
7秒前
JamesPei应助乔磊采纳,获得10
7秒前
7秒前
脑洞疼应助吴永吉采纳,获得10
7秒前
深情安青应助qingli采纳,获得10
8秒前
完美世界应助jiejie采纳,获得10
8秒前
promise完成签到 ,获得积分10
8秒前
王鑫发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
伶俐碧萱完成签到 ,获得积分10
12秒前
泡泡发布了新的文献求助10
12秒前
顾矜应助小苏打采纳,获得10
12秒前
zzh发布了新的文献求助10
12秒前
陈尹蓝完成签到 ,获得积分10
12秒前
穆空完成签到,获得积分10
13秒前
14秒前
糊涂的老头完成签到,获得积分10
14秒前
英俊的铭应助明理的天蓝采纳,获得10
15秒前
kk99123应助陆66采纳,获得10
15秒前
彭于晏应助云上人采纳,获得10
15秒前
16秒前
维尼发布了新的文献求助10
16秒前
豆包糊了完成签到,获得积分10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4109068
求助须知:如何正确求助?哪些是违规求助? 3647383
关于积分的说明 11553483
捐赠科研通 3353372
什么是DOI,文献DOI怎么找? 1842320
邀请新用户注册赠送积分活动 908597
科研通“疑难数据库(出版商)”最低求助积分说明 825644