Degradation of Li3V2(PO4)3-based full-cells containing Li4Ti5O12 or Li3.2V0.8Si0.2O4 anodes modeled by charge-discharge cycling simulations

阳极 电解质 阴极 降级(电信) 材料科学 分解 电极 化学工程 分析化学(期刊) 化学
作者
Yu Chikaoka,Reiko Okuda,Taiga Hashimoto,Masafumi Kuwao,Wako Naoi,Etsuro Iwama,Katsuhiko Naoi
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:423: 140558-140558 被引量:3
标识
DOI:10.1016/j.electacta.2022.140558
摘要

Li3V2(PO4)3 (LVP) has been considered as a promising cathode material for high-power energy-storage devices because of its high ionic conductivity, good stability, and excellent safety profile. However, LVP-cathode-based devices are infamous for a poor cyclability, due to reductive decomposition of the electrolyte at the counterpart anode during cycling; this is induced by small quantities of vanadium ions that leach from the LVP. To overcome this issue, a deeper understanding of the degradation reaction, which is dependent on the anode reaction potential and the states of charge (SOC), is required. In this study, we constructed two types of LVP-based full-cells (Li4Ti5O12 (LTO)//LVP and Li3.2V0.8Si0.2O4 (LVSiO)//LVP) to investigate the effect of the anode reaction potential on the electrolyte decomposition and cycling performance; the former cell contains a high-reaction-potential anode (1.55 V vs. Li/Li+), while the latter contains a low-reaction-potential anode (0.4–1.3 V vs. Li/Li+). The capacity degradation modes of these full-cells were evaluated using simple charge–discharge cycling simulations based on the coulombic efficiency, capacity decay, and degree of lithium-ion pre-doping of the electrode materials. Simulation studies indicate that the degradation of LTO//LVP is due to the low coulombic efficiency without capacity decay at the LTO anode, whereas the degradation of LVSiO//LVP is due to the low coulombic efficiency with capacity decay at the LVSiO anode. The simulated results were fully supported by experimental and electron microscopic observations. Based on these findings, we mitigated the side reactions arising from leached vanadium-ions using lithium pre-doping and a LiBF4 electrolyte, which resulted in an increase in the capacity retention for both types of full-cells to values of 84–98% after 1000 cycles. These insights provide guidance regarding the degradation modes and potential remedies for increasing the performance of a wide range of battery systems and not just LVP-based systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
徐伟大完成签到 ,获得积分10
1秒前
hilm应助呆萌的雅彤采纳,获得10
4秒前
Razy完成签到,获得积分10
6秒前
珍珍完成签到,获得积分20
6秒前
Ava应助一只小野采纳,获得10
7秒前
7秒前
辉HUI发布了新的文献求助10
7秒前
喻鞅完成签到,获得积分0
7秒前
7秒前
10秒前
kerity发布了新的文献求助10
12秒前
14秒前
辉HUI完成签到,获得积分20
14秒前
18秒前
Zhao发布了新的文献求助10
19秒前
细小发布了新的文献求助10
20秒前
hilm应助等风来、云飞扬采纳,获得10
20秒前
20秒前
20秒前
光亮的天川完成签到 ,获得积分10
21秒前
桐桐应助priscilla采纳,获得10
22秒前
酷酷盼秋应助叶叶采纳,获得10
23秒前
研友_VZG7GZ应助科研式采纳,获得10
24秒前
25秒前
领导范儿应助answer采纳,获得10
25秒前
25秒前
27秒前
一只小野发布了新的文献求助10
27秒前
30秒前
31秒前
32秒前
lj发布了新的文献求助10
32秒前
bkagyin应助会幸福的采纳,获得10
32秒前
早日毕业完成签到 ,获得积分10
36秒前
36秒前
1111发布了新的文献求助10
37秒前
37秒前
zhoumomomo完成签到,获得积分10
37秒前
开始啦完成签到,获得积分10
39秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457641
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292698
捐赠科研通 4488688
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343