亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YDTR: Infrared and Visible Image Fusion via Y-Shape Dynamic Transformer

计算机科学 人工智能 计算机视觉 图像融合 特征提取 红外线的 模式识别(心理学) 图像(数学) 光学 物理
作者
Wei Tang,Fazhi He,Yü Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5413-5428 被引量:176
标识
DOI:10.1109/tmm.2022.3192661
摘要

Infrared and visible image fusion is aims to generate a composite image that can simultaneously describe the salient target in the infrared image and texture details in the visible image of the same scene. Since deep learning (DL) exhibits great feature extraction ability in computer vision tasks, it has also been widely employed in handling infrared and visible image fusion issue. However, the existing DL-based methods generally extract complementary information from source images through convolutional operations, which results in limited preservation of global features. To this end, we propose a novel infrared and visible image fusion method, i.e., the Y-shape dynamic Transformer (YDTR). Specifically, a dynamic Transformer module (DTRM) is designed to acquire not only the local features but also the significant context information. Furthermore, the proposed network is devised in a Y-shape to comprehensively maintain the thermal radiation information from the infrared image and scene details from the visible image. Considering the specific information provided by the source images, we design a loss function that consists of two terms to improve fusion quality: a structural similarity (SSIM) term and a spatial frequency (SF) term. Extensive experiments on mainstream datasets illustrate that the proposed method outperforms both classical and state-of-the-art approaches in both qualitative and quantitative assessments. We further extend the YDTR to address other infrared and RGB-visible images and multi-focus images without fine-tuning, and the satisfactory fusion results demonstrate that the proposed method has good generalization capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
Brot完成签到,获得积分10
22秒前
SophiaMX发布了新的文献求助10
24秒前
科研通AI6应助云云采纳,获得10
32秒前
科研通AI5应助云云采纳,获得10
32秒前
1分钟前
云云发布了新的文献求助10
1分钟前
哈哈带发布了新的文献求助10
1分钟前
1分钟前
爱静静完成签到,获得积分0
1分钟前
SophiaMX发布了新的文献求助10
2分钟前
哈哈带发布了新的文献求助10
2分钟前
李总要发财小苏发文章完成签到,获得积分10
2分钟前
云云发布了新的文献求助10
2分钟前
科研通AI5应助云云采纳,获得10
2分钟前
文静的峻熙完成签到,获得积分10
3分钟前
SophiaMX发布了新的文献求助10
4分钟前
4分钟前
茜伯莉亚快乐小仙女完成签到,获得积分10
4分钟前
4分钟前
云云发布了新的文献求助10
4分钟前
僦是卜够完成签到 ,获得积分10
4分钟前
4分钟前
充电宝应助SophiaMX采纳,获得10
4分钟前
Marciu33应助科研通管家采纳,获得10
4分钟前
4分钟前
云云发布了新的文献求助10
5分钟前
5分钟前
lia发布了新的文献求助10
5分钟前
5分钟前
SophiaMX发布了新的文献求助10
5分钟前
lia完成签到,获得积分20
6分钟前
搜集达人应助SophiaMX采纳,获得10
6分钟前
科研通AI2S应助lia采纳,获得30
6分钟前
7分钟前
SophiaMX发布了新的文献求助10
7分钟前
nannan完成签到 ,获得积分10
8分钟前
李联洪发布了新的文献求助10
8分钟前
宁静完成签到 ,获得积分10
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Finance: Theory and Policy. 12th Edition 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4409762
求助须知:如何正确求助?哪些是违规求助? 3894110
关于积分的说明 12114778
捐赠科研通 3539201
什么是DOI,文献DOI怎么找? 1942018
邀请新用户注册赠送积分活动 982708
科研通“疑难数据库(出版商)”最低求助积分说明 879177