Semantic Pre-Alignment and Ranking Learning With Unified Framework for Cross-Modal Retrieval

计算机科学 情报检索 排名(信息检索) 人工智能 语义学(计算机科学) 图像检索 学习排名 一致性(知识库) 显式语义分析 特征(语言学) 视觉文字 语义计算 图像(数学) 语义网 语义技术 语言学 哲学 程序设计语言
作者
Qingrong Cheng,Zhenshan Tan,Keyu Wen,Cheng Chen,Xiaodong Gu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 6503-6516 被引量:18
标识
DOI:10.1109/tcsvt.2022.3182549
摘要

Cross-modal retrieval aims at retrieving highly semantic relevant information among multi-modalities. Existing cross-modal retrieval methods mainly explore the semantic consistency between image and text while rarely consider the rankings of positive instances in the retrieval results. Moreover, these methods seldom take into account the cross-interaction between image and text, which leads to the deficiency of learning their semantic relations. In this paper, we propose a Unified framework with Ranking Learning (URL) for cross-modal retrieval. The unified framework consists of three sub-networks, visual network, textual network, and interaction network. Visual network and textual network project the image feature and text feature into their corresponding hidden spaces respectively. Then, the interaction network forces the target image-text representation to align in the common space. For unifying both semantics and rankings, we propose a new optimization paradigm including pre-alignment for semantic knowledge transfer and ranking learning for final retrieval, which can decouple semantic alignment and ranking learning. The former focuses on the semantic pre-alignment optimized by semantic classification and the latter revolves around the retrieval rankings. For the ranking learning, we introduce a cross-AP loss which can directly optimize the retrieval metric average precision for cross-modal retrieval. We conduct experiments on four widely-used benchmarks, including Wikipedia dataset, Pascal Sentence dataset, NUS-WIDE-10k dataset, and PKU XMediaNet dataset respectively. Extensive experimental results show that the proposed method can obtain higher retrieval precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
菜狗完成签到,获得积分20
1秒前
觅海发布了新的文献求助10
1秒前
可爱的函函应助江峰采纳,获得10
2秒前
3秒前
3秒前
JamesPei应助Czt采纳,获得10
4秒前
菜狗发布了新的文献求助10
4秒前
5秒前
小郭发布了新的文献求助10
6秒前
科研通AI5应助Darlene采纳,获得30
7秒前
sunsun10086完成签到 ,获得积分10
8秒前
NIUB发布了新的文献求助10
8秒前
tay发布了新的文献求助10
9秒前
之星君完成签到,获得积分10
10秒前
xcltzh1296完成签到,获得积分10
10秒前
普萘洛尔完成签到 ,获得积分10
10秒前
李沐唅发布了新的文献求助10
12秒前
天行马完成签到,获得积分10
13秒前
13秒前
14秒前
zhou完成签到,获得积分10
15秒前
18秒前
20秒前
丘比特应助芝士双皮奶采纳,获得30
20秒前
充满怪兽的世界完成签到,获得积分10
20秒前
橙子fy16_完成签到,获得积分10
21秒前
木子完成签到 ,获得积分10
22秒前
22秒前
23秒前
24秒前
橙子fy16_发布了新的文献求助30
24秒前
科研完成签到,获得积分10
24秒前
喜悦的妙之完成签到,获得积分10
25秒前
TigerOvO完成签到,获得积分10
26秒前
小白菜发布了新的文献求助10
27秒前
27秒前
Aventen应助ccc采纳,获得50
27秒前
陆建鹏发布了新的文献求助10
27秒前
哦哟发布了新的文献求助10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803576
求助须知:如何正确求助?哪些是违规求助? 3348491
关于积分的说明 10338876
捐赠科研通 3064615
什么是DOI,文献DOI怎么找? 1682639
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038