Determining the distributions of plant communities in subantarctic vegetation using species distribution models

植被(病理学) 航程(航空) 物种分布 背景(考古学) 生态学 自然地理学 生物 地理 栖息地 医学 古生物学 材料科学 病理 复合材料
作者
Nicholas B. Fitzgerald,J. B. Kirkpatrick,Catherine R. Dickson,Laura K. Williams,Alexander J. F. Fergus,Jennie Whinam
出处
期刊:Australian Journal of Botany [CSIRO Publishing]
卷期号:70 (4): 311-322
标识
DOI:10.1071/bt21124
摘要

Context Mapping of vegetation is important in understanding its dynamics in relation to climate change and disturbance. We investigated using species distribution models to predict plant species assemblages in a subantarctic environment where traditional image interpretation methods of vegetation mapping are limited by image availability and ability to discriminate vegetation types. Aims We test the efficacy for mapping of modelling the range and core range of common species. We also determine the relative importance of predictor variables for each of nine species. Methods We used random forest models to predict the total range and core range (>25% projected foliage cover) of nine potentially dominant plant species and determined the contributions of predictor variables to the models for each species. Key results Widespread species with extensively overlapping ranges were spatially more partitioned with modelling based on core range than with presence or absence modelling. The core range input produced a vegetation map that better approximated observed vegetation patterns than that from presence or absence data. The most important predictor variable varied between species, with elevation, distance from coast, latitude and an across island gradient (similar to longitude) being most influential. Conclusions Species distribution models using three categories (absent, <25% cover, ≥25% cover) and topographic variables derived from a digital elevation model can be used to model the distribution of vegetation assemblages in situations where presence or absence species models cannot discriminate assemblages. Implications Readily collected point location species data could be used to investigate change over time in the spatial extent of both species and vegetation types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shu完成签到,获得积分10
刚刚
KLED完成签到 ,获得积分10
刚刚
Wu完成签到 ,获得积分10
1秒前
HAO完成签到,获得积分10
1秒前
2秒前
3秒前
浅浅完成签到 ,获得积分10
4秒前
suliang完成签到,获得积分10
4秒前
南瓜气气完成签到,获得积分10
4秒前
4秒前
4秒前
Smiley发布了新的文献求助10
6秒前
Smiley发布了新的文献求助10
6秒前
Smiley发布了新的文献求助10
6秒前
尺子尺子和池子完成签到,获得积分10
6秒前
Smiley发布了新的文献求助10
6秒前
Smiley发布了新的文献求助10
7秒前
jessie完成签到,获得积分10
8秒前
Smiley发布了新的文献求助10
8秒前
Smiley发布了新的文献求助10
8秒前
111完成签到 ,获得积分10
9秒前
蜜HHH完成签到 ,获得积分10
9秒前
BK2008完成签到,获得积分10
9秒前
9秒前
10秒前
情怀应助狂野篮球采纳,获得10
10秒前
乐乐应助青栞采纳,获得10
10秒前
活ni的pig完成签到 ,获得积分10
11秒前
棒棒棒完成签到,获得积分10
12秒前
星星月完成签到 ,获得积分10
13秒前
14秒前
等我吃胖完成签到,获得积分10
16秒前
caia发布了新的文献求助10
16秒前
18秒前
英俊芷完成签到 ,获得积分10
18秒前
可耐的问柳完成签到 ,获得积分10
18秒前
Ldq完成签到 ,获得积分10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782820
求助须知:如何正确求助?哪些是违规求助? 3328174
关于积分的说明 10235032
捐赠科研通 3043175
什么是DOI,文献DOI怎么找? 1670456
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759010