A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection

太赫兹辐射 光电子学 超材料吸收剂 材料科学 掩蔽 阻抗匹配 光学 吸收(声学) 超材料 宽带 电阻抗 物理 可调谐超材料 量子力学 复合材料
作者
Zhe Zheng,Ying Zheng,Yao Luo,Zao Yi,Jianguo Zhang,Zhimin Liu,Wen‐Xing Yang,Yang Yu,Xianwen Wu,Pinghui Wu
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:24 (4): 2527-2533 被引量:202
标识
DOI:10.1039/d1cp04974g
摘要

Terahertz functional devices have been instrumental in the development of terahertz technology. Moreover, the advent of metamaterials has greatly contributed to the advancement of terahertz devices. However, most of today's metamaterials in the terahertz band exhibit poor performance and are mono-functional. This greatly limits the scalability and application potential of the devices. To achieve diversification and tunability of device functionality, we propose a combination of metamaterial structures and vanadium dioxide film. A metamaterial absorber based on the thermotropic phase change material VO2 has been designed. Flexible switching of absorption performance (complete reflection and ultra-broadband perfect absorption) can be achieved through temperature adjustment. Moreover, the perfectly absorbed bandwidth is a staggering 3.3 THz. The thermal tuning of spectral absorbance has a maximal range of 0.01 to 0.999. The shift in absorption properties is explained by the phase change process of vanadium oxide (MIT). The electric field intensity on the absorber surface at different temperatures was monitored and analysed as a way to correlate the VO2 film phase transition process. The impedance matching theory is applied to explain the high level of absorption generated by the absorber. Finally, the effects of the structural parameters on the performance of the absorber are analysed. This work will have many applications in the terahertz field and offers a wide range of ideas for the design of terahertz-enabled devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽珩发布了新的文献求助10
2秒前
害怕的听筠完成签到,获得积分10
4秒前
高高的坤完成签到 ,获得积分10
4秒前
酥瓜完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助努力搞科研采纳,获得10
5秒前
HEAR应助烂漫剑采纳,获得10
5秒前
科研通AI5应助墨墨采纳,获得30
6秒前
8秒前
10秒前
12秒前
zy发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
osmanthus应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
YOYOYO应助科研通管家采纳,获得20
19秒前
Akim应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
鬼笔环肽应助科研通管家采纳,获得10
19秒前
YOYOYO应助科研通管家采纳,获得20
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
cdercder应助满眼星辰采纳,获得10
20秒前
21秒前
22秒前
bkagyin应助zy采纳,获得10
22秒前
一路美好发布了新的文献求助10
22秒前
善学以致用应助羊羊羊采纳,获得10
24秒前
lJH完成签到,获得积分10
31秒前
32秒前
33秒前
36秒前
羊羊羊发布了新的文献求助10
37秒前
科研通AI5应助墨墨采纳,获得30
40秒前
科研通AI5应助yan采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776915
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209854
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797658
科研通“疑难数据库(出版商)”最低求助积分说明 757998