清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat

高光谱成像 支持向量机 特征选择 随机森林 人工智能 精准农业 计算机科学 集成学习 特征(语言学) Lasso(编程语言) 遥感 机器学习 模式识别(心理学) 数学 农业 哲学 语言学 地质学 万维网 生物 生态学
作者
Zongpeng Li,Zhen Chen,Qian Cheng,Fuyi Duan,Ruixiu Sui,Xiuqiao Huang,Xu HongGang
出处
期刊:Agronomy [MDPI AG]
卷期号:12 (1): 202-202 被引量:79
标识
DOI:10.3390/agronomy12010202
摘要

Winter wheat is a widely-grown cereal crop worldwide. Using growth-stage information to estimate winter wheat yields in a timely manner is essential for accurate crop management and rapid decision-making in sustainable agriculture, and to increase productivity while reducing environmental impact. UAV remote sensing is widely used in precision agriculture due to its flexibility and increased spatial and spectral resolution. Hyperspectral data are used to model crop traits because of their ability to provide continuous rich spectral information and higher spectral fidelity. In this study, hyperspectral image data of the winter wheat crop canopy at the flowering and grain-filling stages was acquired by a low-altitude unmanned aerial vehicle (UAV), and machine learning was used to predict winter wheat yields. Specifically, a large number of spectral indices were extracted from the spectral data, and three feature selection methods, recursive feature elimination (RFE), Boruta feature selection, and the Pearson correlation coefficient (PCC), were used to filter high spectral indices in order to reduce the dimensionality of the data. Four major basic learner models, (1) support vector machine (SVM), (2) Gaussian process (GP), (3) linear ridge regression (LRR), and (4) random forest (RF), were also constructed, and an ensemble machine learning model was developed by combining the four base learner models. The results showed that the SVM yield prediction model, constructed on the basis of the preferred features, performed the best among the base learner models, with an R2 between 0.62 and 0.73. The accuracy of the proposed ensemble learner model was higher than that of each base learner model; moreover, the R2 (0.78) for the yield prediction model based on Boruta’s preferred characteristics was the highest at the grain-filling stage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank完成签到,获得积分0
5秒前
嘀嘀嘀完成签到 ,获得积分10
7秒前
34秒前
Nene发布了新的文献求助30
35秒前
38秒前
wood完成签到,获得积分10
49秒前
赘婿应助Nene采纳,获得10
1分钟前
juan完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
西山菩提完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
懒人张完成签到,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
小巧的柏柳完成签到 ,获得积分10
4分钟前
李健应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
4分钟前
4分钟前
guoxihan完成签到,获得积分10
4分钟前
秋夜临完成签到,获得积分0
5分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
愤怒的念蕾完成签到,获得积分10
6分钟前
李木禾完成签到 ,获得积分10
7分钟前
老老熊完成签到,获得积分10
7分钟前
cc完成签到,获得积分10
7分钟前
dydydyd完成签到,获得积分10
8分钟前
8分钟前
敏敏9813完成签到,获得积分10
8分钟前
HHM给HHM的求助进行了留言
8分钟前
燕聪聪完成签到,获得积分10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459559
求助须知:如何正确求助?哪些是违规求助? 4565076
关于积分的说明 14297502
捐赠科研通 4490338
什么是DOI,文献DOI怎么找? 2459685
邀请新用户注册赠送积分活动 1449272
关于科研通互助平台的介绍 1424914