自回归模型
正交性
估计员
协变量
半参数模型
星型
一致性(知识库)
选择(遗传算法)
变量(数学)
投影(关系代数)
计量经济学
计算机科学
半参数回归
特征选择
选型
数学
统计
算法
人工智能
自回归积分移动平均
时间序列
数学分析
几何学
作者
Peixin Zhao,Hao Wu,Suli Cheng,Yiping Yang
标识
DOI:10.1080/03610918.2021.2012193
摘要
In this paper, we consider the variable selection for a class of semiparametric spatial autoregressive models. By using orthogonal projection technique, we propose a new orthogonality-based variable selection procedure, which can select important covariates, and can identify the significance of spatial effects simultaneously. The consistency of the proposed variable selection procedure and the convergence rate of the resulting estimators are derived under some regular conditions. Furthermore, some simulation studies are carried out to examine the finite sample performance of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI