TDABNet: Three-directional attention block network for the determination of IDH status in low- and high-grade gliomas from MRI

计算机科学 卷积神经网络 异柠檬酸脱氢酶 块(置换群论) 经济短缺 胶质瘤 人工智能 磁共振成像 放射科 医学 物理 癌症研究 数学 哲学 核磁共振 语言学 政府(语言学) 几何学
作者
Lingmei Ai,Wenhao Bai,Mengge Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103574-103574 被引量:3
标识
DOI:10.1016/j.bspc.2022.103574
摘要

The isocitrate dehydrogenase (IDH) mutation in low- and high-grade gliomas have proven to be the critical molecular biomarker associated with better prognosis. Although the determination of the IDH status of these neoplasms prior to surgical intervention is considered beneficial for prognosis, this information is currently only available after surgical removal of the tissue. At present, most studies have proved the efficiency of deep learning technology in noninvasive diagnosing IDH status. However, there are still some shortages. Firstly, they only input the 2D slices of gliomas into the network, ignoring the significant amount of extra information of gliomas in the third dimension. Secondly, because glioma is a heterogeneous three-dimensional volume with complex imaging features, it is still a challenge for traditional CNN to learn the features that help predict IDH status from magnetic resonance imaging (MRI). To address these issues, we propose a Three-Directional Attention Block Network (TDABNet) based on a three-dimensional convolutional neural network (3D CNN), which can accurately determine the IDH status in gliomas from 3D MRI. The performance of TDABNet was validated in a dataset of 235 patients with low- and high-grade gliomas and the area under the operating characteristic curve (AUC) of IDH status prediction is 96. 44%. It is proved by experiment that TDABNet can accurately predict the IDH status of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gary发布了新的文献求助10
1秒前
Yang发布了新的文献求助10
1秒前
2秒前
3秒前
思源应助zychaos采纳,获得10
3秒前
圣诞节完成签到,获得积分10
4秒前
JHL发布了新的文献求助10
4秒前
花开富贵发布了新的文献求助10
4秒前
4秒前
Jiaoshb发布了新的文献求助10
4秒前
5秒前
缓慢冬天完成签到,获得积分10
5秒前
6秒前
SYLH应助陈皮糖不酸采纳,获得20
6秒前
guo发布了新的文献求助10
6秒前
7秒前
7秒前
郭振宇发布了新的文献求助10
8秒前
受伤南霜发布了新的文献求助10
8秒前
打打应助36456657采纳,获得10
8秒前
SYLH应助b_wasky采纳,获得10
9秒前
gxj发布了新的文献求助10
9秒前
acc发布了新的文献求助10
9秒前
10秒前
10秒前
seesun发布了新的文献求助10
11秒前
11秒前
星星发布了新的文献求助10
12秒前
gxj完成签到,获得积分20
13秒前
13秒前
菠菜发布了新的文献求助30
13秒前
14秒前
zychaos发布了新的文献求助10
15秒前
荣浩宇发布了新的文献求助10
16秒前
woods发布了新的文献求助30
16秒前
田様应助星星采纳,获得10
16秒前
深情安青应助没所谓采纳,获得10
17秒前
17秒前
17秒前
充电宝应助科研小废废采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786075
求助须知:如何正确求助?哪些是违规求助? 3331598
关于积分的说明 10251651
捐赠科研通 3046943
什么是DOI,文献DOI怎么找? 1672302
邀请新用户注册赠送积分活动 801223
科研通“疑难数据库(出版商)”最低求助积分说明 760027