Physics-Based Convolutional Neural Network for Fault Diagnosis of Rolling Element Bearings

卷积神经网络 人工智能 深度学习 断层(地质) 方位(导航) 人工神经网络 滚动轴承 光学(聚焦) 计算机科学 机器学习 工程类 模式识别(心理学) 状态监测 电气工程 声学 地质学 物理 地震学 光学 振动
作者
Mohammadkazem Sadoughi,Chao Hu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:19 (11): 4181-4192 被引量:137
标识
DOI:10.1109/jsen.2019.2898634
摘要

During the past few years, deep learning has been recognized as a useful tool in condition monitoring and fault detection of rolling element bearings. Although existing deep learning approaches are able to intelligently detect and classify the faults in bearings, they still face one or both of the following challenges: 1) most of these approaches rely exclusively on data and do not incorporate physical knowledge into the learning and prediction processes and 2) the approaches often focus on the fault diagnosis of a single bearing in a rotating machine, while in reality, a rotating machine may contain multiple bearings. To address these challenges, this paper proposes a novel approach, namely physics-based convolutional neural network (PCNN), for fault diagnosis of rolling element bearings. In PCNN, an exclusively data-driven deep learning approach, called CNN, is carefully modified to incorporate useful information from physical knowledge about bearings and their fault characteristics. To this end, the proposed approach 1) utilizes spectral kurtosis and envelope analysis to extract sidebands from raw sensor signals and minimize non-transient components of the signals and 2) feeds the information about the fault characteristics into the CNN model. With the capability to process signals from multiple sensors, the proposed PCNN approach is capable of concurrently monitoring multiple bearings and detecting faults in these bearings. The performance of PCNN in machinery fault diagnosis is compared with that of traditional machine learning- and deep learning-based approaches reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张牧之完成签到 ,获得积分10
刚刚
panpan完成签到 ,获得积分10
3秒前
苦行僧发布了新的文献求助50
4秒前
布可完成签到,获得积分10
5秒前
ES完成签到 ,获得积分0
8秒前
Bryce完成签到 ,获得积分10
9秒前
9秒前
10秒前
幽默的友灵完成签到,获得积分10
10秒前
11秒前
11秒前
bk201完成签到 ,获得积分10
11秒前
songf11完成签到,获得积分10
12秒前
14秒前
Freya发布了新的文献求助10
15秒前
曹国庆完成签到 ,获得积分10
15秒前
17秒前
19秒前
19秒前
20秒前
深情安青应助abc采纳,获得10
21秒前
carl发布了新的文献求助30
23秒前
小马甲应助6633采纳,获得10
23秒前
23秒前
NexusExplorer应助DIDIDI采纳,获得10
23秒前
24秒前
24秒前
guan完成签到,获得积分20
26秒前
学生白发布了新的文献求助10
26秒前
文天烽完成签到,获得积分10
28秒前
29秒前
31秒前
33秒前
34秒前
钮傲白发布了新的文献求助10
34秒前
思源应助carl采纳,获得10
35秒前
学生白完成签到,获得积分10
36秒前
思源应助鞘皮采纳,获得10
36秒前
abc发布了新的文献求助10
36秒前
小周发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751