材料科学
钙钛矿(结构)
发光二极管
光致发光
纳米晶
钝化
油胺
配体(生物化学)
密度泛函理论
带隙
卤化物
光电子学
纳米技术
化学工程
无机化学
化学
计算化学
受体
工程类
图层(电子)
生物化学
作者
Jong Hyun Park,Ah Young Lee,Jae Choul Yu,Yun Seok Nam,Yong-Sung Choi,Myoung Hoon Song
标识
DOI:10.1021/acsami.8b20808
摘要
Lead halide perovskites (LHPs) are emerging as promising materials for light-emitting device applications because of the tunability of the band gap, narrow emission, solution processability, and flexibility. Typically, LHP nanocrystals (NCs) with surface ligands show high photoluminescence quantum yields because of charge-carrier confinement with higher exciton binding energy (Eb). However, the conventionally used oleylamine (OAm) ligands result in the low electrical conductivity and stability of perovskite NCs (PNCs) because of a long carbon chain without conjugation bonds and weak interaction with the surface of NCs. Here, we report the effect of bulkiness and chain length of ligand materials on the properties and stability of CsPbBr3 PNCs by replacing OAm with other suitable ligands. The effect of the bulkiness of quaternary ammonium bromide (QAB) ligands was systemically studied. The less bulky QAB ligands surrounded the surface of NCs effectively, and brought better surface passivation and less aggregation compared to bulky QAB ligands, and finally the optical property and stability of CsPbBr3 PNCs were enhanced. Furthermore, the electrical property of CsPbBr3 PNCs was optimized by tuning the long-chain length of QAB ligands for balanced charge-carrier transport. Finally, we achieved highly efficient green emissive CsPbBr3 PNC light-emitting diodes (LEDs) by using PNCs with optimized didecyldimethyl ammonium bromide ligands with a current efficiency of 31.7 cd A–1 and external quantum efficiency of 9.7%, which were enhanced 16-fold compared to those of CsPbBr3 LEDs using PNCs with conventional OAm ligands.
科研通智能强力驱动
Strongly Powered by AbleSci AI