等离子体子
材料科学
纳米结构
单层
纳米尺度
纳米技术
纳米光子学
平面的
共振(粒子物理)
表面等离子共振
光电子学
联轴节(管道)
激子
纳米颗粒
凝聚态物理
物理
计算机图形学(图像)
粒子物理学
计算机科学
冶金
作者
Xuexian Chen,Hao Wang,Ningsheng Xu,Huanjun Chen,Shaozhi Deng
标识
DOI:10.1016/j.apmt.2019.01.004
摘要
Planar metallic nanoholes exhibit plasmonic resonances capable of confining electromagnetic fields down to the nanoscale, which can benefit the light–matter interactions at the nanoscale. In addition, they are more geometrically compatible with state-of-the-art microfabrication techniques in comparison with other types of plasmonic nanostructures of curved surfaces or protrusions. Two-dimensional transition metal dichalcogenides (TMDCs) are promising materials for studying light–matter interactions owing to their excellent optical properties. Herein, we propose a resonance plasmon–exciton coupling system based on the integration of monolayer tungsten disulfide (WS2) with an individual plasmonic gold nanohole. Our results demonstrate that Rabi splitting exceeding 162 meV can be achieved in planar TMDC/metal nanostructures at room temperature. We believe that such hybrid systems provide a simple and robust single nanostructure design that can be used to manipulate light–matter interactions at the nanoscale.
科研通智能强力驱动
Strongly Powered by AbleSci AI