Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility Study

乳腺摄影术 逻辑回归 医学 乳腺癌 双雷达 人工智能 无线电技术 朴素贝叶斯分类器 乳房成像 数据集 放射科 机器学习 计算机科学 支持向量机 癌症 内科学
作者
Ning Mao,Ping Yin,Qinglin Wang,Meijie Liu,Jianjun Dong,Xuexi Zhang,Haizhu Xie,Nan Hong
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:16 (4): 485-491 被引量:73
标识
DOI:10.1016/j.jacr.2018.09.041
摘要

Abstract

Background

This study aimed to evaluate whether radiomics can improve the diagnostic performance of mammography compared with that obtained by experienced radiologists.

Methods

This retrospective study included 173 patients (with 74 benign and 99 malignant lesions) who underwent mammography examination before neoadjuvant chemotherapy. Radiomic features were extracted from the mammography image of each patient. Several preprocessing methods, including centering and normalization, were used along with statistical analysis to reduce and select radiomic features. Four machine learning algorithms, namely, support vector machine, logistic regression, K-nearest neighbor, and Bayes classification, were applied to construct a predictive model. An independent testing data set was used to validate the prediction ability of the model. The classification performance was compared with the diagnostic predictions of two breast radiologists who had access to the same mammography cases.

Results

A total of 51 radiomic features remained after the preprocessing. Logistic regression classification presented the best differentiation ability among the four regression models. The diagnostic accuracy, specificity, and sensitivity of the logistic regression model for the training data set were 0.978, 0.975, and 0.983, respectively. The diagnostic accuracy, specificity, and sensitivity for the testing data set were 0.886, 0.900, and 0.867, respectively. The accuracy, specificity, and sensitivity of the combined reading of the two radiologists were 0.772, 0.710, 0.862 in the training data set and 0.769, 0.695, 0.858 in the testing data set, respectively.

Conclusions

Mammography images could be captured and quantified by radiomics, which offers a good diagnostic ability for benign and malignant breast tumors and provides complementary information to radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助呆萌的沛珊采纳,获得10
1秒前
2秒前
寻雾启事发布了新的文献求助10
2秒前
ding应助心平气和采纳,获得10
3秒前
呼呼呼发布了新的文献求助10
6秒前
充电宝应助纯情的心情采纳,获得10
7秒前
手抓饼啊发布了新的文献求助10
7秒前
星辰大海应助爱听歌笑寒采纳,获得10
7秒前
9秒前
慕青应助比大家采纳,获得10
9秒前
小白杨完成签到,获得积分10
11秒前
eru完成签到,获得积分10
11秒前
loewy完成签到,获得积分10
12秒前
久9完成签到 ,获得积分10
12秒前
12秒前
14秒前
呼呼呼完成签到 ,获得积分10
15秒前
兔子不吃胡萝卜完成签到 ,获得积分10
20秒前
21秒前
顾矜应助小杨采纳,获得10
21秒前
Ankher应助寻雾启事采纳,获得100
21秒前
善学以致用应助寻雾启事采纳,获得10
21秒前
英俊的铭应助茜茜采纳,获得10
23秒前
CCCCCL完成签到,获得积分10
24秒前
丘比特应助原子采纳,获得10
24秒前
东郭一斩完成签到,获得积分10
24秒前
科研通AI2S应助wuliao151采纳,获得10
24秒前
24秒前
24秒前
Rye227应助我爱学习采纳,获得30
25秒前
huahua完成签到 ,获得积分10
26秒前
追光发布了新的文献求助10
26秒前
科研通AI5应助hcasdgchadcgawhu采纳,获得10
27秒前
木雨亦潇潇完成签到,获得积分10
27秒前
月下丶陈一完成签到 ,获得积分10
28秒前
31秒前
31秒前
和谐的映梦完成签到,获得积分10
31秒前
CipherSage应助落后醉易采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614