亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multivalued Neural Network Inverse Modeling and Applications to Microwave Filters

反向 人工神经网络 反问题 反函数 计算机科学 算法 集合(抽象数据类型) 匹配(统计) 数学 人工智能 数学分析 统计 几何学 程序设计语言
作者
Chao Zhang,Jing Jin,Weicong Na,Qijun Zhang,Ming Yu
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:66 (8): 3781-3797 被引量:122
标识
DOI:10.1109/tmtt.2018.2841889
摘要

This paper presents a new technique for artificial neural network (ANN) inverse modeling and applications to microwave filters. In inverse modeling of a microwave component, the inputs to the model are electrical parameters such as S-parameters, and the outputs of the model are geometrical or physical parameters. Since the analytical formula of the inverse input-output relationship does not exist, the ANN becomes a logical choice, because it can be trained to learn from the data in inverse modeling. The main challenge of inverse modeling is the nonuniqueness problem. This problem in the ANN inverse modeling is that different training samples with the same or very similar input values have quite different (contradictory) output values (multivalued solutions). In this paper, we propose a multivalued neural network inverse modeling technique to associate a single set of electrical parameters with multiple sets of geometrical or physical parameters. One set of geometrical or physical parameters is called one value of our proposed inverse model. Our proposed multivalued neural network is structured to accommodate multiple values for the model output. We also propose a new training error function to focus on matching each training sample using only one value of our proposed inverse model, while other values are free and can be trained to match other contradictory samples. In this way, our proposed multivalued neural network can learn all the training data by automatically redirecting contradictory information into different values of the proposed inverse model. Therefore, our proposed technique can solve the nonuniqueness problem in a simpler and more automated way compared with the existing ANN inverse modeling techniques. This technique is illustrated by inverse modeling and parameter extraction of four microwave filter examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
科研通AI2S应助kaka采纳,获得10
11秒前
20秒前
24秒前
28秒前
43秒前
沙与沫完成签到 ,获得积分10
58秒前
Krim完成签到 ,获得积分10
58秒前
杪夏二八完成签到 ,获得积分10
1分钟前
Tiger完成签到,获得积分10
1分钟前
搜集达人应助Tiger采纳,获得10
1分钟前
Akim应助sfx采纳,获得10
1分钟前
1分钟前
lijiauyi1994发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
lijiauyi1994完成签到,获得积分10
1分钟前
1分钟前
矢思然完成签到,获得积分10
2分钟前
2分钟前
斯文败类应助精明晓刚采纳,获得10
2分钟前
2分钟前
无辜笑容发布了新的文献求助10
2分钟前
2分钟前
大模型应助加绒采纳,获得30
2分钟前
精明晓刚发布了新的文献求助10
2分钟前
精明晓刚完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Yu完成签到,获得积分20
3分钟前
Yu发布了新的文献求助40
3分钟前
3分钟前
4分钟前
sfwrbh发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
archer01发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264