材料科学
放射发光
光致发光
卤化物
激子
结构刚度
刚度(电磁)
重组
发光
配体(生物化学)
星团(航天器)
化学物理
光电子学
结晶学
磷光
分子物理学
电荷(物理)
自发辐射
铜
折叠(DSP实现)
纳米晶
退火(玻璃)
模板
光化学
量子效率
无辐射复合
作者
J. L. Liu,Zhou Xiong,Lijun Yang,Xueli Xu,Huiyan Zhao,Shujuan Liu,Xiangmei Liu,Qiang Zhao
标识
DOI:10.1002/adom.202502786
摘要
Abstract The luminescent efficiency of copper(I) halide cluster‐based complexes is frequently diminished by multiple exciton recombination centers, which significantly restricts their optoelectronic applications. Herein, a mild structural rigidity‐regulation strategy is proposed to suppress exciton recombination by organizing Cu x X x clusters with either the semi‐rigid ligand bis(2‐diphenylphosphinophenyl)ether ( POP ) or the rigid ligand 1,2‐bis(diphenylphosphino)benzene ( dppb ). As a proof of concept, sandwich‐ or butterfly‐like Cu x X x (L) 2 ( x = 2 or 4; X = I or Br, L = POP or dppb ) clusters with different structural rigidity and photoluminescence/radioluminescence performance are synthesized. Compared with Cu 4 I 4 (POP) 2 , the Cu 2 I 2 (POP) 2 and Cu 2 I 2 (dppb) 2 clusters possess higher structural rigidity and form more compact stacks, effectively suppressing structural relaxation‐induced non‐radiative transitions during metal‐to‐ligand or halide‐to‐ligand charge transfer (M/XLCT). Notably, Cu 2 I 2 (POP) 2 and Cu 2 I 2 (dppb) 2 exhibit high photoluminescence/radioluminescence performance, achieving steady‐state X‐ray light yields nearly 150% higher than those of commercial LuAG:Ce. Furthermore, their corresponding flexible films demonstrate outstanding spatial resolution, reaching 11.5 and 14.0 lp mm −1 , respectively. This rigidity‐regulation strategy can open a new avenue for the systematically designing of high‐performance Cu x X x cluster‐based X‐ray scintillators.
科研通智能强力驱动
Strongly Powered by AbleSci AI