催化作用
材料科学
氧气
电子转移
价(化学)
光催化
选择性
空位缺陷
电子结构
活动站点
格子(音乐)
化学物理
电子
光化学
析氧
化学
载流子
电荷(物理)
工作(物理)
质子
量子效率
退火(玻璃)
无机化学
合理设计
氧化还原
物理化学
光电子学
作者
Qian Liang,Jingshan Fan,Xiuzheng Deng,Jiang-Chuan Liu,Jianrong Zeng,Zhang Hui,Jing Li,Chang-Hai Liu,Zhenhui Kang,Zhen Zhao
标识
DOI:10.1002/anie.202521874
摘要
Abstract Efficient proton‐coupled electron transfer (PCET) at tailored active sites is beneficial for photocatalytic CO 2 reduction, yet the relationship between catalytic sites and performance remains unclear. Herein, p ‐block Sn is introduced into the Bi 2 MoO 6 lattice (Sn‐BMO) via Bi site substitution to construct a novel oxygen vacancy (Ov)‐Bi‐O‐Sn structure, where high‐valence Sn induces Ov formation by lowering the Bi valence state, thereby creating a charge‐asymmetrical region. This unique configuration promotes PCET: Sn acts as H 2 O oxidation site, enabling proton transfer to proximal Bi site connected to Ov that preferentially traps electrons to convert CO 2 . Furthermore, the electronic structure of Bi is modified to optimize Bi 6 p ‐C 2 p hybridization for formation of the key intermediate *CHO with low energy barrier. Consequently, Sn‐BMO exhibits a remarkable CH 4 evolution rate of 207.3 µmol g −1 h −1 with 95.7% CH 4 selectivity in pure water, achieving a record apparent quantum efficiency of 9.4% at 420 nm. This work provides a novel approach to design charge‐asymmetrical active site in multisite catalysts, elucidating how p ‐block elements influence catalytic performance in CO 2 photoreduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI