Porosity evaluation of additive manufacturing components by deep learning-assisted nonlinear ultrasonic technique

多孔性 非线性系统 超声波传感器 声学 灵敏度(控制系统) 材料科学 无损检测 卷积神经网络 人工神经网络 计算机科学 超声波检测 反向 组分(热力学) 反问题 生物系统 非线性声学 深度学习 机械工程
作者
Xing Yuan,Yibo Zhang,Shaopu Su,Xianmin Chen,Mingxi Deng,Weibin Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ae3338
摘要

Abstract The porosity of additive manufacturing (AM) components exerts a profound influence on their mechanical properties, thereby impeding their widespread engineering adoption. Current porosity evaluation methodologies predominantly rely on destructive testing approaches, underscoring the pressing demand for a non-destructive testing (NDT) method enabling precise and in-situ porosity evaluation. In this paper, we propose a novel method for porosity evaluation of AM components by deep learning (DL)-assisted nonlinear ultrasonic technique. Experimental investigations revealed that ultrasonic nonlinear responses exhibit pronounced sensitivity to subtle variations in AM component porosity. However, the complex mapping between porosity and the nonlinear response of ultrasonic waves, stemming from the intricate interplay of multiple printing parameters, poses a significant challenge for traditional modeling approaches relying solely on the nonlinear coefficient. To address this challenge and enable high-precision porosity evaluation, we established a Convolutional Neural Network (CNN) - Bidirectional Long Short-Term Memory (BiLSTM) - Attention network. The nonlinear response of ultrasonic waves was extracted using the phase-reversal method and employed as the proposed network's input. The trained network achieved high-precision prediction of porosity. Comparative analyses between the predicted results obtained by using phase-reversed signals and conventional evaluation signals highlighted the indispensable role of nonlinear ultrasonic responses in capturing porosity-dependent features, providing a explanation for the established DL method. The proposed method reveals the complementary integration of nonlinear ultrasonic waves and the DL method: the former provides physical sensitivity to porosity evolution, while the latter resolves the ill-posed nature of inverse problems. This synergistic framework establishes a novel solution for high-precision NDT of AM components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
雨过无尘发布了新的文献求助10
6秒前
7秒前
田様应助Ly采纳,获得10
7秒前
kobe0842关注了科研通微信公众号
7秒前
小懒猪发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
lsy完成签到,获得积分10
9秒前
细心沛山完成签到,获得积分10
9秒前
哈哈完成签到,获得积分10
9秒前
复成发布了新的文献求助10
9秒前
9秒前
lennon完成签到,获得积分10
10秒前
10秒前
休眠火山完成签到,获得积分10
10秒前
10秒前
10秒前
hehe发布了新的文献求助10
11秒前
徐磊发布了新的文献求助10
11秒前
一点发布了新的文献求助10
11秒前
11秒前
顾鹏飞发布了新的文献求助10
12秒前
苏州河发布了新的文献求助10
12秒前
12秒前
12秒前
yyy完成签到,获得积分10
12秒前
十三应助复杂的寒荷采纳,获得10
13秒前
DamenS发布了新的文献求助10
14秒前
无极微光应助111采纳,获得30
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621197
求助须知:如何正确求助?哪些是违规求助? 4705939
关于积分的说明 14934259
捐赠科研通 4764936
什么是DOI,文献DOI怎么找? 2551495
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746