Luciferase Advisor: High-Accuracy Model To Flag False Positive Hits in Luciferase HTS Assays

荧光素酶 标志(线性代数) 计算生物学 计算机科学 化学 生物 生物化学 数学 基因 域代数上的 转染 纯数学
作者
Dipan Ghosh,Uwe Koch,Kamyar Hadian,Michael Sattler,Igor V. Tetko
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:58 (5): 933-942 被引量:29
标识
DOI:10.1021/acs.jcim.7b00574
摘要

Firefly luciferase is an enzyme that has found ubiquitous use in biological assays in high-throughput screening (HTS) campaigns. The inhibition of luciferase in such assays could lead to a false positive result. This issue has been known for a long time, and there have been significant efforts to identify luciferase inhibitors in order to enhance recognition of false positives in screening assays. However, although a large amount of publicly accessible luciferase counterscreen data is available, to date little effort has been devoted to building a chemoinformatic model that can identify such molecules in a given data set. In this study we developed models to identify these molecules using various methods, such as molecular docking, SMARTS screening, pharmacophores, and machine learning methods. Among the structure-based methods, the pharmacophore-based method showed promising results, with a balanced accuracy of 74.2%. However, machine-learning approaches using associative neural networks outperformed all of the other methods explored, producing a final model with a balanced accuracy of 89.7%. The high predictive accuracy of this model is expected to be useful for advising which compounds are potential luciferase inhibitors present in luciferase HTS assays. The models developed in this work are freely available at the OCHEM platform at http://ochem.eu .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高挑的鱼发布了新的文献求助10
1秒前
azmj发布了新的文献求助10
1秒前
十里八乡发布了新的文献求助30
1秒前
132关闭了132文献求助
2秒前
3秒前
3秒前
宋礼发布了新的文献求助10
3秒前
deepsuck发布了新的文献求助30
4秒前
5秒前
共享精神应助帅气海菡采纳,获得30
6秒前
6秒前
CipherSage应助真实的语堂采纳,获得10
7秒前
研友_LOqqmZ完成签到 ,获得积分10
7秒前
badercao发布了新的文献求助20
7秒前
7秒前
8秒前
柯擎汉发布了新的文献求助30
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
jzt12138发布了新的文献求助10
8秒前
wanci应助king采纳,获得10
9秒前
9秒前
一一应助雪白依波采纳,获得10
10秒前
xzh完成签到,获得积分10
11秒前
七里野草完成签到,获得积分10
11秒前
潮汐发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
gcy发布了新的文献求助10
14秒前
67n发布了新的文献求助10
14秒前
十里八乡完成签到,获得积分20
16秒前
16秒前
一见喜发布了新的文献求助10
17秒前
所所应助azmj采纳,获得10
18秒前
可爱的函函应助wwx采纳,获得10
19秒前
闪闪完成签到,获得积分10
20秒前
21秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667