激光诱导击穿光谱
熔盐
铈
材料科学
腐蚀
激光器
检出限
光谱学
分析化学(期刊)
核工程
冶金
化学
光学
色谱法
物理
工程类
量子力学
作者
Yunu Lee,Seokjoo Yoon,Nayoung Kim,Dokyu Kang,Hyeongbin Kim,Wonseok Yang,M. Burger,Igor Jovanovic,Sungyeol Choi
标识
DOI:10.1016/j.net.2022.07.014
摘要
An advanced nuclear reactor based on molten salts including a molten salt reactor and pyroprocessing needs a sensitive monitoring system suitable for operation in harsh environments with limited access. Multi-element detection is challenging with the conventional technologies that are compatible with the in-situ operation; hence laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential alternative. However, limited precision is a chronic problem with LIBS. We increased the precision of LIBS under high temperature by protecting optics using a gas protective layer and correcting for shot-to-shot variance and lens-to-sample distance using a laser-induced acoustic signal. This study investigates cerium as a surrogate for uranium and corrosion products for simulating corrosive environments in LiCl–KCl. While the un-corrected limit of detection (LOD) range is 425–513 ppm, the acoustic-corrected LOD range is 360–397 ppm. The typical cerium concentrations in pyroprocessing are about two orders of magnitude higher than the LOD found in this study. A LIBS monitoring system that adopts these methods could have a significant impact on the ability to monitor and provide early detection of the transient behavior of salt composition in advanced molten salt-based nuclear reactors.
科研通智能强力驱动
Strongly Powered by AbleSci AI