Nanocarbon Based Chemiresistive Detection of Monochloramine in Water

氯胺 化学 滴定法 消毒剂 氯胺化 水溶液 安培滴定法 无机化学 环境化学 有机化学 离子 电位滴定法
作者
Md Ali Akbar,P. Ravi Selvaganapathy,Peter Kruse
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (52): 2137-2137 被引量:1
标识
DOI:10.1149/ma2022-01522137mtgabs
摘要

The use of chloramine as a disinfectant in water treatment plants is becoming popular due to its lower reactivity and higher stability than free chlorine. 1–3 Chloramines are produced by the reaction of free chlorine (HOCl, OCl - ) with nitrogen compounds to form monochloramine (NH 2 Cl), dichloramine (NHCl 2 ) or nitrogen trichloride (NCl 3 ), depending on pH and N/Cl ratio. 4 Dichloramine and nitrogen trichloride tend to create odour and taste problems in drinking water. Thus, only monochloramine is preferred for disinfection. Typically, 0.5-2 mg/L of monochloramine is maintained in the water distribution system. 5 Maintaining the concentration level of monochloramine is crucial to prevent pathogen growth in the drinking water. Currently, there is no direct method to measure chloramine. However, U.S. EPA-approved amperometric titration and colorimetric methods are available which can be used to measure total and free chlorine in aqueous media. 2 An amperometric titration method (SM 4500-Cl D) is capable of distinguishing 3 common forms of chlorine: Cl 2 / HOCl / OCl - , NH 2 Cl, and NHCl 2 . However, it fails at concentrations greater than 2 mg/L (as Cl 2 ). 2,3 Even though this method is not affected by common oxidizing agents, temperature changes, turbidity, and colour, it does require a greater degree of skill. Operationally simpler, N,N-diethyl-p-phenylenediamine (DPD) methods (ferrous and colorimetric) are used to measure free and total chlorine and then their subtraction gives the concentration of monochloramine, assuming no NHCl 2 and NCl 3 are present. DPD methods are subjected to interferences like copper, manganese (oxidized), iodide and chromate. 6 Additionally, the DPD method is not suitable for continuous monitoring of monochloramine which is essential in water distribution plants to maintain the appropriate concentration of disinfectant. 2,3,7 Here we demonstrate a chemiresistive sensor array for the continuous monitoring of chloramine in the water. Chemiresistive sensors are cheap, robust and use low power. These sensors detect an analyte through changes in the electronic properties of the transducing element. A nanocarbon network was airbrushed onto the frosted side of a microscope glass slide as the transducing element between two pencil trace contact patches. Copper tapes were placed on top of the pencil patches and then covered with a dielectric. 10 mV voltage was applied for the measurements, and the changes in resistance were measured as the analyte interacted with the transducing element. The surface of the nanocarbon network is functionalized with suitable dopant molecules by submerging the sensor in the molecule solution. This array of molecules will be able to capture the parameters to be able to classify the type of chloramine present in water. Fresh chloramine solution is prepared before each experiment by adding NH 4 Cl and NaOCl in Phosphate Buffered Saline (PBS). Sensor responses are recorded as positive current change with increasing concentrations of monochloramine. Here the hole density of the inherently p-doped substrate increases when exposed to monochloramine, and thereby resulting in increasing current. Sensors can be reset with ascorbic acid or water. Sensors were tested with 0.054 ppm to 1.437 ppm of monochloramine in pH 7.5 and 8.5. Functionalized sensor devices showed a considerably higher response than the unfunctionalized ones. The tap water sample was tested with the calibrated devices. We have therefore demonstrated a robust sensor array capable of continuously monitoring chloramine in aqueous media. References: T. L. Engelhardt and V. B. Malkov, Chlorination, chloramination and chlorine measurement, p. 1–67, (2015). US Environmental Protection Agency - Office of Water, Alternative disinfectants and oxidants Guidance manual , 1st Ed., p. 1–328, (Washington, DC) US Environmental Agency, (1999). S. H. Jenkins, Water Res. , 16, 1495–1496 (1982). T. H. Nguyen et al., Sensors Actuators, B Chem ., 187, 622–629 (2013). T. H. Nguyen et al., Sensors Actuators, B Chem. , 208, 622–627 (2015). Health Canada, Chloramines in drinking water (2019). World Health Organization, Guidelines for drinking-water quality: fourth edition incorporating the first addendum , 4th Ed + 1., Geneva: World Health Organization, (2017). Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
搜集达人应助闪明火龙果采纳,获得10
5秒前
雪白的平蓝关注了科研通微信公众号
7秒前
包容的映天完成签到 ,获得积分10
7秒前
科研渣子发布了新的文献求助10
7秒前
QIZH发布了新的文献求助10
7秒前
小马甲应助Lin采纳,获得10
8秒前
QIZH完成签到,获得积分10
12秒前
大恩区完成签到,获得积分10
13秒前
不如实干兴邦完成签到,获得积分10
15秒前
myt完成签到,获得积分10
15秒前
嘻嘻叮完成签到,获得积分10
15秒前
15秒前
19秒前
can完成签到,获得积分10
24秒前
24秒前
丢丢银发布了新的文献求助10
29秒前
深情安青应助小李采纳,获得10
29秒前
闪明火龙果完成签到,获得积分20
33秒前
科研通AI5应助丢丢银采纳,获得10
43秒前
称心曼岚完成签到 ,获得积分10
45秒前
所所应助煎蛋采纳,获得10
47秒前
49秒前
小李完成签到 ,获得积分10
49秒前
50秒前
默默板凳完成签到 ,获得积分10
51秒前
jingrong发布了新的文献求助10
53秒前
惧感完成签到 ,获得积分10
54秒前
Lin发布了新的文献求助10
54秒前
wanci应助风中乐曲采纳,获得10
59秒前
秭归子归发布了新的文献求助10
1分钟前
yukinade完成签到,获得积分10
1分钟前
jingrong完成签到,获得积分10
1分钟前
谦让的雅青完成签到 ,获得积分10
1分钟前
丘比特应助yukinade采纳,获得10
1分钟前
隐形曼青应助TAN采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040