Time-series analysis and Flood Prediction using a Deep Learning Approach

计算机科学 时间序列 深度学习 大洪水 循环神经网络 人工智能 均方误差 人工神经网络 机器学习 系列(地层学) 数据挖掘 预测建模 数据建模 统计 数学 地理 生物 数据库 古生物学 考古
作者
Selva Jeba G.,P. Chitra,Uma Maheswari Rajasekaran
标识
DOI:10.1109/wispnet54241.2022.9767102
摘要

Deep neural networks have been used successfully to solve time series prediction problems. Given their ability to automatically understand the temporal connections found in time series, they have shown to be an effective solution. In this proposed research, a Deep Learning (DL) based flood prediction model is explored and utilized for interpretation and prediction using meteorological data to reduce computational and time complexity with high accuracy. Gated Recurrent Networks (GRU) a variant of recurrent neural network model which can effectively use past data information for prediction and is faster in terms of training speed is the deep learning architecture deployed. Correlation analysis was performed on the weather parameters and the appropriate parameters were chosen. The dataset compromises 52 years (19022 records) of weather data in which 80% is used for training 20% for testing. The predictive modeling of rainfall associated with the South-west monsoon can guide the prediction of flood occurrence. The model deployed was evaluated with the performance metrics such as RMSE, MAE against LSTM model. The deployed RNN-GRU model had relatively low RMSE and MAE values when compared with LSTM architecture with improved prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单十三发布了新的文献求助100
2秒前
ikun完成签到,获得积分10
2秒前
小鹿5460发布了新的文献求助200
3秒前
QS完成签到,获得积分10
4秒前
失眠醉易应助我姓王采纳,获得20
5秒前
元谷雪发布了新的文献求助10
8秒前
勤劳的以蓝完成签到,获得积分10
11秒前
12秒前
小六完成签到,获得积分10
13秒前
koutianle完成签到 ,获得积分10
14秒前
14秒前
大模型应助Phi.Wang采纳,获得10
16秒前
JamesPei应助小羊睡饱了采纳,获得10
16秒前
落叶捎来讯息完成签到 ,获得积分10
19秒前
研友_VZG7GZ应助Bressanone采纳,获得10
19秒前
时光完成签到,获得积分10
20秒前
呜啦啦啦完成签到,获得积分10
22秒前
23秒前
头头完成签到,获得积分10
24秒前
李新光完成签到 ,获得积分10
24秒前
乐乐应助Darren采纳,获得10
24秒前
26秒前
ding应助cure采纳,获得20
27秒前
小熊发布了新的文献求助10
27秒前
Luchy完成签到 ,获得积分10
29秒前
成就书雪完成签到,获得积分0
30秒前
Phi.Wang发布了新的文献求助10
31秒前
顺利毕业发布了新的文献求助10
31秒前
34秒前
元谷雪发布了新的文献求助10
35秒前
kento发布了新的文献求助30
38秒前
搜集达人应助安详芝麻采纳,获得10
40秒前
NN应助安静的睿渊采纳,获得10
40秒前
41秒前
44秒前
44秒前
ChenWei给ChenWei的求助进行了留言
45秒前
顺利毕业完成签到,获得积分20
46秒前
46秒前
云烟成雨完成签到,获得积分10
46秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307