启发式
编码
计算机科学
启发式
车辆路径问题
人工智能
人口
人工神经网络
随机性
操作员(生物学)
局部搜索(优化)
选择(遗传算法)
构造(python库)
数学优化
机器学习
布线(电子设计自动化)
数学
计算机网络
生物化学
化学
统计
人口学
抑制因子
社会学
转录因子
基因
程序设计语言
操作系统
作者
Jonas K. Falkner,Daniela Thyssens,Lars Schmidt-Thieme
出处
期刊:Cornell University - arXiv
日期:2022-05-02
被引量:1
标识
DOI:10.48550/arxiv.2205.00772
摘要
We propose a Large Neighborhood Search (LNS) approach utilizing a learned construction heuristic based on neural networks as repair operator to solve the vehicle routing problem with time windows (VRPTW). Our method uses graph neural networks to encode the problem and auto-regressively decodes a solution and is trained with reinforcement learning on the construction task without requiring any labels for supervision. The neural repair operator is combined with a local search routine, heuristic destruction operators and a selection procedure applied to a small population to arrive at a sophisticated solution approach. The key idea is to use the learned model to re-construct the partially destructed solution and to introduce randomness via the destruction heuristics (or the stochastic policy itself) to effectively explore a large neighborhood.
科研通智能强力驱动
Strongly Powered by AbleSci AI