清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep learning-based method for segmentation and quantitative characterization of microstructures in weathering steel from sequential scanning electron microscope images

阈值 珠光体 像素 人工智能 分割 软件 表征(材料科学) 模式识别(心理学) 计算机科学 材料科学 图像分割 样品(材料) 微观结构 计算机视觉 图像(数学) 复合材料 物理 纳米技术 奥氏体 程序设计语言 热力学
作者
Bing Han,Weihao Wan,Dandan Sun,Caichang Dong,Lei Zhao,Haizhou Wang
出处
期刊:Journal of Iron and Steel Research International [Springer Nature]
卷期号:29 (5): 836-845 被引量:21
标识
DOI:10.1007/s42243-021-00719-7
摘要

Microstructural classification is typically done manually by human experts, which gives rise to uncertainties due to subjectivity and reduces the overall efficiency. A high-throughput characterization is proposed based on deep learning, rapid acquisition technology, and mathematical statistics for the recognition, segmentation, and quantification of microstructure in weathering steel. The segmentation results showed that this method was accurate and efficient, and the segmentation of inclusions and pearlite phase achieved accuracy of 89.95% and 90.86%, respectively. The time required for batch processing by MIPAR software involving thresholding segmentation, morphological processing, and small area deletion was 1.05 s for a single image. By comparison, our system required only 0.102 s, which is ten times faster than the commercial software. The quantification results were extracted from large volumes of sequential image data (150 mm2, 62,216 images, 1024 × 1024 pixels), which ensure comprehensive statistics. Microstructure information, such as three-dimensional density distribution and the frequency of the minimum spatial distance of inclusions on the sample surface of 150 mm2, were quantified by extracting the coordinates and sizes of individual features. A refined characterization method for two-dimensional structures and spatial information that is unattainable when performing manually or with software is provided. That will be useful for understanding properties or behaviors of weathering steel, and reducing the resort to physical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天玄发布了新的文献求助10
15秒前
25秒前
32秒前
天玄发布了新的文献求助10
37秒前
48秒前
糟糕的翅膀完成签到,获得积分10
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
1分钟前
披着羊皮的狼完成签到 ,获得积分10
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
迷茫的一代完成签到,获得积分10
1分钟前
1分钟前
天玄发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
wzbc完成签到,获得积分10
2分钟前
2分钟前
2分钟前
南寅完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分0
5分钟前
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
走啊走完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
cheryjay发布了新的文献求助10
6分钟前
wen完成签到,获得积分10
6分钟前
刘刘完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624