High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm

电子鼻 传感器阵列 卷积神经网络 计算机科学 算法 选择性 材料科学 纳米技术 实时计算 人工智能 化学 机器学习 生物化学 催化作用
作者
Mingu Kang,Incheol Cho,Jaeho Park,Jaeseok Jeong,Kichul Lee,Byeongju Lee,Dionisio Del Orbe,Kuk‐Jin Yoon,Inkyu Park
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:7 (2): 430-440 被引量:197
标识
DOI:10.1021/acssensors.1c01204
摘要

Semiconductor metal oxide (SMO) gas sensors are attracting great attention as next-generation environmental monitoring sensors. However, there are limitations to the actual application of SMO gas sensors due to their low selectivity. Although the electronic nose (E-nose) systems based on a sensor array are regarded as a solution for the selectivity issue, poor accuracy caused by the nonuniformity of the fabricated gas sensors and difficulty of real-time gas detection have yet to be resolved. In this study, these problems have been solved by fabricating uniform gas sensor arrays and applying the deep learning algorithm to the data from the sensor arrays. Nanocolumnar films of metal oxides (SnO2, In2O3, WO3, and CuO) with a high batch uniformity deposited through glancing angle deposition were used as the sensing materials. The convolutional neural network (CNN) using the input data as a matrix form was adopted as a learning algorithm, which could conduct pattern recognition of the sensor responses. Finally, real-time selective gas detection for CO, NH3, NO2, CH4, and acetone (C3H6O) gas was achieved (minimum response time of 1, 8, 5, 19, and 2 s, respectively) with an accuracy of 98% by applying preprocessed response data to the CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助YBR采纳,获得10
刚刚
刚刚
刚刚
小陈爱科研完成签到,获得积分10
刚刚
干旱半干旱你完成签到,获得积分10
1秒前
wennnnn完成签到,获得积分10
1秒前
雍井完成签到,获得积分20
1秒前
浮游应助yang采纳,获得10
1秒前
1秒前
Orange应助xxx采纳,获得10
2秒前
贾哲宇发布了新的文献求助10
2秒前
leslie完成签到,获得积分20
2秒前
99411发布了新的文献求助10
2秒前
LX1005完成签到 ,获得积分10
2秒前
2秒前
完美世界应助薛定谔的猫采纳,获得10
2秒前
尹静涵发布了新的文献求助10
2秒前
2秒前
彭于晏应助suohaiyun采纳,获得10
3秒前
SOLKATT发布了新的文献求助10
3秒前
听话的汽车完成签到,获得积分10
3秒前
3秒前
充电宝应助ALOHA采纳,获得10
3秒前
硕博连退完成签到,获得积分10
4秒前
yier完成签到,获得积分10
4秒前
4秒前
4秒前
某种臭脸美女完成签到,获得积分10
4秒前
大个应助zxl采纳,获得10
5秒前
xhy发布了新的文献求助10
5秒前
6秒前
hucheng完成签到,获得积分20
6秒前
赘婿应助dj采纳,获得10
6秒前
ikea1984发布了新的文献求助10
6秒前
滴滴发布了新的文献求助10
7秒前
王慧婷完成签到,获得积分10
7秒前
7秒前
CC发布了新的文献求助10
7秒前
7秒前
鱼不鱼发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526018
求助须知:如何正确求助?哪些是违规求助? 4616198
关于积分的说明 14552293
捐赠科研通 4554419
什么是DOI,文献DOI怎么找? 2495890
邀请新用户注册赠送积分活动 1476218
关于科研通互助平台的介绍 1447892