土霉素
代谢物
根际
苗木
微塑料
食品科学
化学
根际细菌
园艺
农学
生物
环境化学
微生物学
细菌
抗生素
生物化学
遗传学
作者
Aiyun Guo,Chengrong Pan,Xiangmiao Su,Xu Zhou,Yanyu Bao
标识
DOI:10.1016/j.envpol.2022.119046
摘要
The widespread application of antibiotics and plastic films in agriculture leads to new characteristics of soil pollution with the coexistence of antibiotics and microplastics. However, their combined effects on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles remain unclear. Here, in the potted experiment, wheat was treated with individual oxytetracycline (0, 5.0, 50.0, and 150.0 mg kg-1) and the combination of oxytetracycline and polyethylene microplastic (0.2%). Results showed that 150 mg kg-1 oxytetracycline combined with microplastic significantly reduced the biomass and height of the plant. Compared with CK, all the treatments exposed to the combination of oxytetracycline and polyethylene microplastic significantly promoted carotenoid content and peroxidase activity in wheat leaves. Soil dehydrogenase and urease activities were more sensitive to current pollutant exposure than sucrase activity. Oxytetracycline (150 mg kg-1) alone and in combination with polyethylene significantly decreased the abundances of certain genera belonging to plant growth-promoting rhizobacteria (PGPR) in soil, such as Arthrobacter, Gemmatimonas, Massilia, and Sphingomonas. Combined exposure of 150 mg kg-1 oxytetracycline and polyethylene microplastic significantly altered multiple metabolites including organic acids and sugars. Network analysis indicated that co-exposure of 150 mg kg-1 oxytetracycline and microplastic may affect the colonization and succession of PGPR by regulating soil metabolites, thereby indirectly inhibiting wheat seedling growth. The results help to elucidate the potential mechanisms of phytotoxicity of the combination of oxytetracycline and polyethylene microplastic.
科研通智能强力驱动
Strongly Powered by AbleSci AI