守恒定律
Korteweg–de Vries方程
数学
对称(几何)
无穷小
李代数
欧拉方程
对称群
李群
操作员(生物学)
数学物理
数学分析
纯数学
物理
非线性系统
量子力学
几何学
基因
转录因子
抑制因子
化学
生物化学
作者
Mehdi Jafari,Amirhesam Zaeim,Amin Tanhaeivash
标识
DOI:10.1142/s0219887822500980
摘要
In this paper, using the Lie symmetry method, we obtain the Lie symmetry group of the potential modified Korteweg–de Vries (potential mKdV) equation, and we construct the optimal system of one-dimensional subalgebras for the Lie symmetry algebra of this equation. Furthermore, similarity reductions related to the infinitesimal generators of the Lie symmetry group are obtained. Also, we construct new conservation laws for this equation by the scaling method. This method is algorithmic and based on the linear algebra tools and calculus of variations. The density of the conservation laws is constructed using the Euler operator and scaling symmetry of the equation and also the associated flux is calculated by the homotopy operator. This density-flux pair renders a conservation law for the potential mKdV equation. We specify the density-flux pairs of conservation laws in ranks 4, 8, 12, 16 and 20 for the potential mKdV equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI